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Adaptive Active Fusion of Camera and Single-Point
LiDAR for Depth Estimation

Dang M. Tran , Nate Ahlgren , Chris Depcik , and Hongsheng He

Abstract— Depth sensing is an important problem in many
applications, such as autonomous driving, robotics, and automa-
tion. This article presents an adaptive active fusion method
for scene depth estimation by using a camera and a single-
point light detection and ranging (LiDAR) sensor. An active
scanning mechanism is proposed to guide laser scanning based
on critical visual and saliency features, and the convolutional
spatial propagation network (CSPN) is designed to generate
and refine full depth map from the sparse depth scans. The
active scanning mechanism generates a depth mask by using
log-spectrum saliency detection, Canny edge detection, and uni-
form sampling, which indicate critical regions that require a high
resolution of laser scanning. To reconstruct a full depth map,
the designed CSPN network extracts affinity matrices from the
sparse depth scans, while reserving global spatial information in
the images. The performance of proposed method was evaluated
and compared with the state-of-the-art methods on the NYU
depth dataset v2 (NYUv2) and the experiment demonstrated its
outperformance in reconstruction accuracy and robustness to
measurement noise. The proposed method was also evaluated
in real-world scenarios.

Index Terms— Cost-effective light detection and ranging
(LiDAR), deep learning, depth completion, sensor fusion, single-
point LiDAR.

I. INTRODUCTION

DEPTH sensing provides critical scene information for
many applications, such as scene perception, autonomous

robotic navigation, safety awareness, and environment mod-
eling. Light detection and ranging (LiDAR) sensors are
popularly used in these applications, and LiDAR-based depth
estimation techniques have been extensively studied. Recently,
low-cost LiDAR sensors have attracted more attention of
the research community. A single-point LiDAR system costs
below US $300 can scan up to 700,000 points with high
accuracy and resolution [1]. As a trade-off, the system is not
suitable for real-time applications due to the limited moving
speed of its servo mechanism. The system requires 130 mins
to capture one indoor scene [2]. In general, it is challenging
to obtain complete depth sensing in real time using solely
a single-point rangefinder. On the other hand, a camera can
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quickly capture visual information of an entire scene. It is,
therefore, beneficial to fuse cost-effective camera and single-
point LiDAR for depth estimation due to their complementary
properties.

Cost-efficient LiDAR and RGB cameras have been inte-
grated as affordable alternatives to commercial high-end
LiDARs [3]. The classical method for sensor fusion is
analytical modeling using inference, optimization, and interpo-
lation [4]. Recently, learning approaches have been applied to
sensor fusion and depth estimation. To recover dense depth
from sparse laser scan data, sparse-invariant convolutional
neural networks (CNNs) were developed for upsampling by
introducing an effective sparse convolution layer that explic-
itly processes missing data during the convolution operation.
For fast changing environments, several frameworks were
designed to model a sequence of RGB images, e.g., the
self-supervised training pipeline in autonomous driving [5].
In addition, domain-specific network architectures for depth
estimation have been studied to overcome training bottlenecks
and improve fusion performance [6]. Recent work discovered
that integrated surface normal and attention map can improve
the performance of depth estimation and handle occlusions [7];
however, the proposed networks require dense 3-D LiDAR or
planar LiDAR scans [3]. Little progress has been made in the
research of depth estimation by using single-point LiDAR,
which demands efficient sampling strategies and fusion algo-
rithms to process sparse scans.

The depth estimation methods based on dense data cannot
be directly applied to a single-point LiDAR, which only sam-
ples one point during a scan. Dense scans for real-time depth
sensing are solely available on high-end 3-D LiDARs [8],
[9]. The primary challenge in depth estimation using low-
cost single-point LiDAR is to balance scanning density and
real-time performance. For instance, high-resolution point
cloud requires dense sampling, and it takes time to direct
the single-point laser for the scans. A mechanism that opti-
mizes the sampling and distribution will significantly improve
scanning efficiency and real-time performance. The second
challenge is that image-based depth estimation usually pro-
duces blurry outputs, such as the depth completion model
using CNNs, which are attributed to the inaccurate predictions
from local extracted features. To obtain sharp depth maps,
modeling of global information and iterative refinement of the
depth maps become necessary.

In this article, we propose an adaptive active fusion method
for depth estimation using an RGB camera and a laser range
finder. The results of the proposed method are demonstrated
in Fig. 1. Given an RGB image and a sparse depth map,
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Fig. 1. Depth estimation using adaptive active fusion. (a) Pair of a 304 ×

228 RGB image and the sparse depth map. (b) Depth estimation using the
depth completing model. (c) Reconstructed 3-D point cloud.

the model estimates a complete dense depth map in real
time, which can be converted into dense point cloud based
on camera intrinsic parameters (69 312 points per second).
We implemented an active scanning mechanism that improves
scanning efficiency based on critical visual and saliency
features. The mechanism selects informative scene regions
while reducing the sampling ratio of the single-point LiDAR.
To fuse the sparse depth scans and RGB images, we designed
an encoder–decoder architecture with convolutional spatial
propagation layers for depth construction and refinement.
The spatial propagation layer is designed to preserve global
information, which works as a bilateral filter that reduces
estimation noise [10]. The proposed method was evaluated on
the NYU depth dataset v2 (NYUv2) [11] in comparison with
the state-of-the-art methods, including sparse-to-dense [6] and
convolutional spatial propagation network (CSPN) [12]. The
proposed method demonstrated the competitive performance
in accuracy and robustness to measurement noise. The method
improves the accuracy of depth estimation as compared with
pure RGB-based methods, and it could be applied to improve
the performance of line-scanning LiDARs.

The contributions of the article are summarized as follows.
1) An active scanning mechanism based on saliency detec-

tion and feature extraction has been implemented. The
novel mechanism produces a visual mask that guides the
scanning process in an efficient manner.

2) A depth estimation method with balanced sensing accu-
racy and speed has been designed in an encoder–decoder
architecture with convolutional spatial propagation lay-
ers to fuse RGB images and sparse depth scans.

3) A cost-effective LiDAR system has been developed
using the proposed mechanisms and evaluated in real-
world scenarios.

II. ADAPTIVE ACTIVE FUSION

The framework of the adaptive active fusion method is
shown in Fig. 2, where the model takes RGB images
and sparse depth scans as input and generates dense depth
maps. The model contains an active scanning mechanism
(Section II-A), an encoder–decoder architecture, and a con-
volutional spatial propagation layer (Section II-B). The active
scanning mechanism takes an RGB image as input and pro-
duces three maps: saliency map, edge map, and an uniform
grid. These three channels are fused as a scan map that
indicates the regions that the single-point LiDAR should scan.
The RGB image and the sparse depth scans are fed into the
encoder–decoder model, and depth scans are also rerouted to
the spatial propagation layer to produce affinity matrices. The

outputs of the encoder–decoder are combined with results of
the CSPN layer, which generates affinity matrices for iterative
refinement. The final output of the model after iteration is the
refined dense depth map, which is used to construct 3-D point
cloud (Section II-C).

A. Active Scanning Mechanism

To improve the efficiency of the single-point LiDAR,
we propose an active scanning mechanism that utilizes a
various resolution across a scene, where regions with detailed
textures or depth variations are sampled with a high resolution.
As such, this mechanism allows the depth estimation model
to reduce redundant scanning and highlight most critical
information. The active scanning mechanism that integrates
visual saliency and feature maps using the Hadamard product
is defined as follows:

D = S( f ) ⊙ E(G, 2) ⊙ G (1)

where S( f ) is the filtered saliency map, E(G, 2) is the
detected edge map, and G is the uniform distributed grid mask.

Humans pay more attention to important and saliency scene
regions. Such a mechanism can significantly improve the
search efficiency and may boost up the performance of the
depth estimation. In this article, we use the log-spectrum
saliency detection method to compute the saliency map
S∗( f ) [13]. The log-spectrum saliency detection is a static
method that applies a log-form representation of an image
for salient localization. Log spectrum of an image, which is
a frequency domain representation, has been commonly used
in fast semantic categorization problem [14]. Images having
the same semantic characteristics (such as indoor/outdoor and
maximum capturing distance) will belong to the same log
patterns. Given an image X ∈ Rm×n×c, we can compute
its log spectrum L( f ) in frequency domain, using a Fourier
transform method J. Spectral residuals of an image R( f ) can
be obtained from L( f ) using statistical analysis as follows:

R( f ) = L( f ) −
1
n2 Jn ∗ L( f ) (2)

where ∗ is a convolution operation, (1/n2)Jn ∗ L( f ) is a
heuristic estimation of the log spectra shape in the frequency
domain, and Jn is the unit matrix size n × n. Spectral residual
R( f ) is a compressed representation of saliency map in the
frequency domain. It suppresses unimportant information and
preserves nontrivial parts only. To obtain the saliency map
S( f ) in the spatial domain, inverse Fourier transformation
J−1 is applied on the computed spectral residuals S( f ) =

J−1
[exp(R( f ))]2.

The inclusion of edge feature maps in the active scan-
ning mechanism was inspired by the observation on the
saliency maps. Saliency detection focuses on textures or
regions with high entropy but disregards geometric shapes
and local boundaries, which are crucial for depth estimation.
Therefore, we integrated an edge detection model in the active
scanning mechanism. In this article, we adopt the Canny
edge detector [15] considering its computational efficiency
for real-time performance. Canny detection algorithm uses
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Fig. 2. Framework of the adaptive active fusion. Given RGB-D input (304 × 228 × 4), the tensor first goes through 7 × 7 convolutional layer, following
with four downsampling steps and four upsampling steps. Sparse depth map is directly mapped as affinity to guide the depth completing process.

intensity characteristics of an edge to do recognition. Gradient
first-order derivatives in horizontal direction Gx and vertical
direction G y can be obtained by convolution with a Sobel
kernel. The obtained derivatives can be used to estimate the
local gradient G = (G2

x + G2
y)

1/2 and the direction angle
2 = arg tan(G y/Gx ). Once the gradient G and orientation
angle 2 at each pixel are obtained, the Canny algorithm can
be applied to detect valid edges. The Canny detector performs
nonmaximum suppression on each pixels and returns all pos-
sible edges existing in the image. The hysteresis thresholding
is then used to filter out invalid edges E(G, 2).

Though the saliency and edge maps generate a compact
representation of a scene as centralized regions, depth estima-
tion using these featured regions alone achieves lower overall
accuracy as compared with the uniform depth sampling [12],
especially in noncentralized regions. To increase the generality
of the scanning mask, we further refined the scanning mask
by reducing the point density and integrating a uniform grid
mask to capture information from noncentralized regions. The
grid mask G contains pixels uniformly distributed across the
entire image.

The scanning mask selects critical points to depth estimation
and guides the scanning of the single-point LiDAR. To achieve
a fast preprocessing speed, we typically choose a larger kernel
size n = 5 for the log-spectrum-based saliency detection
algorithm. The influencing parameters in the Canny detector
are the minimal and maximal threshold values. Using the hold-
out method on the NYUv2 dataset, we found the thresholds
(100, 200) produced ideal edge features. The sampling per-
centage of the grid mask is set as 50% out of total points,
allowing a sufficient number of nonzero pixels on the saliency
map.

B. Depth Reconstruction

The computed saliency mask is combined with the RGB
image as the input to the depth estimation model. Although
a vanilla autoencoder could do a good job in depth pre-
dicting, the obtained results are usually blurred and have

a lower resolution comparing with the original input [16].
The main challenge in the depth reconstruction problem is to
maintain global spatial information during feature encoding.
Although convolution can capture local relations, traditional
convolutional-based models lack the ability to capture global
information. Thus, we designed a spatial propagation layer
that can help depth prediction process by providing global
information propagated from the original inputs [12], where
global features are represented in the form of affinity matrices.
The model structure is shown in Fig. 2.

To reconstruct depth, the model takes an RGB image X ∈

Rm×n×c combined with saliency masks as input. A sparse
depth image D0 ∈ Rm×n is rerouted directly to the spatial
propagation layer, applying affinity matrices on the predicted
depth. The autoencoder architecture starts with a convolution
layer with a 7 × 7 size kernel followed by a max pooling. The
generated feature map goes through four consecutive down-
sampling blocks, each of which will reduce the dimension by
half while doubling the feature channel dimension. Following
the work [17], each downsampling block is designed to be the
three consecutive convolutional layers with the kernel sizes of
[1, 3, 1], respectively, followed by rectified linear unit (ReLU)
activation functions. The downsampling blocks are used to
compress information of the input feature map into a latent
representation. The output feature map from the encoder is fed
to the decoder, which is a sequence of four upsampling blocks.
Each upsampling block contains a padded convolutional layer
while preserving the shape of the feature map, and an up-
projection block, followed by a ReLU layer. Each upsampling
step uses information from the feature channel to estimate
surrounding pixels in the upscale feature map, which increases
the shape of feature map by 2 while reducing the feature
channel dimension by 22.

The spatial propagation layer combines global information
in the original sparse depth to refine depth prediction. More
specifically, the sparse depth map D0 ∈ Rm×n is rerouted
directly to the CSPN, generating affinities matrices Dn through
n iteration steps. SPNs [12] use the recurring relation between
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Fig. 3. Different spatial propagation strategies. (a) Spatial information is propagated linearly in specific direction as RNN. (b) Spatial information is propagated
in specific many-to-one pattern (three-way connector). (c) Spatial information is propagated using neighbor pixels, similar to convolutional kernel operator.

nearby pixels to propagate spatial information in a specific
direction. Affinity matrices are generated by combining the
propagation results from different directions. An CSPN uses
convolution kernels to instruct the propagating that com-
putes affinity matrices in a single iteration in the anisotropic
diffusion process. This approach increases the computation
efficiency and learning ability [12].

The CPSN logic works as follows. Given sparse depth scans
D0 ∈ Rm×n , the spatial propagation layer generates a feature
map in the hidden space H ∈ Rm×n×c, where c is the feature
dimension. We denote Hi, j as a cell of feature maps H , where
H0 is the feature map H at iteration 0, and Hi, j,t is the cell
at i, j of H at iteration t . Using these notations, the CSPN
defines the recurrence relation of hidden states as follows [18]:

Hi, j,t+1 =κi, j (0, 0) ⊙ Hi, j,0 +

(k−1)

2∑
a,b=

−(k−1)

2

κi, j (a, b) ⊙ Hi−a, j−b,t

(3)

where κ ∈ Rk×k is the normalized kernel size. More specifi-
cally, κi, j can be defined by normalizing equation

κi, j (a, b) =


κ̂ i, j (a, b)∑

a,b ̸=0

∣∣κ̂ i, j (a, b)
∣∣ , if a, b ̸= 0

1 −

∑
a,b ̸=0

κi, j (a, b), otherwise
(4)

where κ̂ ∈ Rk×k is a kernel of the size k. After n iterations, the
CSPN returns a tensor Hn ∈ Rm×n×c, which is concatenated
with the feature map from encoder–decoder components.

Fig. 3 explains the spatial propagation mechanism. Pixels
of the depth image are used as the input to recurrent neural
network (RNN) models. Information of pixel xk,t−1 is propa-
gated toward pixel xk,t through the recurrence relation between
hidden states hk,t−1, hk,t . Linear recurrent propagation through
1-D sequence [18] was first proposed, as shown in Fig. 3(a).
The idea was extended for multiple connectors [18] [Fig. 3(b)]
and convolutional propagation [12] [Fig. 3(c)].

To train multiple regression models, we adopted the reversed
Huber loss function [19] for depth estimation. The reversed

Huber function is designed to be less sensitive to large weight
values than L2 and less sensitive to small weight values than
L1 [6]. More specifically, reversed Huber (denoted as berHu)
is defined as follows:

B(e) =

 |e|, if |e| ≤ c
e2

+ c2

2c
, otherwise

(5)

where e is the absolute difference between predicted depth
Dn ∈ Rm×n and ground truth D∗

∈ Rm×n , and c is 20% of
the maximal absolute error within the working batch.

C. Point Cloud Representation

The estimated depth maps are converted into 3-D point
clouds for noise filtering and refinement. To interchange-
ably transform depth maps to point clouds, we applied the
depth-to-cloud conversion algorithm by using intrinsic camera
parameters obtained from chessboard calibration. Given a
depth image Dn ∈ R304×228, the algorithm maps each pixel
at the uth row and vth column to appropriate point coordinate
(x, y, z) using focal lengths fx , fy , center point offsets cx , cy ,
and the skew value s

D(u, v)

 u
v

1

 =

 fx s cx

0 fy cy

0 0 1

 x
y
z

 (6)

where D(u, v) is the depth value of the pixel (u, v) on the
depth map. More specifically, the point coordination can be
defined as follows: x

y
z

 =

 fx s cx

0 fy cy

0 0 1

−1

D(u, v)

 u
v

1

 (7)

where fx , fy, cx , cy , and s are intrinsic camera parameters.

III. POINT CLOUD REFINEMENT

The reconstructed point cloud from a single 2-D depth scene
will certainly be noisy and incomplete, due to the lack of
full 3-D perception from a single view. Therefore, a noise
filtering algorithm is required in postprocessing to improve
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the quality and visualization of point clouds. Although sur-
face interpolation [20] and projection-based filtering [21] can
effectively remove outliers, these approaches are not suitable
for nonsmooth surfaces and sparsely distributed point clouds.
In addition, the point cloud obtained by the developed sen-
sor is commonly discontinuous and multinomial distributed.
In this article, we propose the iterative statistical outliers
removal (ISOR) algorithm that can adaptively filter noises
from contaminated point clouds by analyzing their statistical
representation. The ISOR method is suitable for unorganized
point cloud representation, especially for outdoor scenes.
Different from the SOR method, which requires a complete
point cloud as input, our proposed ISOR method can handle
incomplete point clouds, using placeholder memory. Point
clouds are divided into reasonable small patches and shifted
into a shared memory. We developed a state machine to
filter these small patches in parallel. The filtering decisions
are based on the number of points in each patch and the
movements of the servo motors.

Based on the current status of each patch, the statistical fil-
tering operator is triggered, which determines by its geometric
properties if a section in a patch should be removed. The local
neighborhood distance is one of the intuitive geometric metrics
for outlier detection. More specifically, given the point cloud
P = {p1, p2, . . . , pn}, local densities are generated using the
Kd-tree method. Each local density Qi = {q i

1, q i
2, . . . , q i

k},
with respect to the querying point pi (i ∈ n), contains k nearest
neighbor points surrounding pi . The average distance of Qi

with respect to pi is computed by [22]

dpi =
1
k

k∑
j=1

∥∥pi − q i
j

∥∥ (8)

where q i
j ∈ Qi and ∥pi −q i

j∥ is the Euclidean distance between
pi and q i

j . The extracted geometric features dpi are used to
estimate local distribution by

L D(pi ) =
1
k

k∑
j=1

e

(
−∥pi −qi

j∥
dpi

)
(9)

where L D(pi ) ∈ [0, 1] is a statistical estimation of pi and dpi

is the average distance of Qi with respect to pi . The local
distribution L D(pi ) indicates the likelihood of point pi to
be an outlier. A point pi is a local outlier if its distance to
surrounding points p j is significantly large. More specifically,
outliers can be defined as follows:

outliers = {pi |L D(pi ) ≥ threshold}. (10)

An equivalent representation of outlier set using cutoff value
can be defined as follows:

L(pi ) = 1 − L D(pi ) (11)
outliers = {pi |L(pi ) ≤ δ} (12)

where δ ∈ [0, 1] is the predefined cutoff value. For scenes with
dense point distribution, we typically choose δ = 0.1, which
successfully filters unwanted outliers.

IV. EXPERIMENT

We evaluated the performance of the proposed adaptive
active fusion method for depth estimation. Experiments were
conducted on the NYUv2 dataset [11] and real-world sce-
narios. Though the RealSense can capture both RGB and
depth streams, only the RGB channel was used for depth
estimation. We compared the proposed method with three
depth estimation approaches: CSPN [12], sparse-to-dense [6],
and monocular [16]. We further investigated the impact of the
active scanning mechanism on depth estimation in different
sampling scales. We also compared the ISOR method with the
SOR approach [22] on real-time performance and accuracy.

A. Experiment Setup

We trained and validated the proposed method on the
NYUv2 dataset [11], which consists of 464 diverse indoor
scenes with RGB and depth frames. We used 249 scenes
for training and preserved 215 for testing. We also followed
the augmentation procedure described in [6]. In total, there
are 47 585 generated samples for training and 655 samples
for testing. The dataset consists of various types of indoor
environments, such as a living room, a basement, a kitchen,
and a bedroom. Each data pair includes an RGB image X ∈

R640×480 and a depth map D∗
∈ R640×480. The RGB images

and depth maps are downsampled and center-cropped into a
fixed size of 304 × 228. The sparse depth map D0 ∈ R304×228

is generated from the complete depth map D∗ using the
sampling strategy described in Section II. The complete depth
maps D∗ are used as the ground truth during training.

The model was trained for 100 epochs using an adaptive
learning rate (lr) initialized with lr = 10−2. The weights of
the encoder–decoder were first initialized from the pretrained
model on the ImageNet dataset. With the learning rate lr =

10−2, the training process took two days to complete; while
with lr = 10−3, the training process extended to weeks
but became overfitting. To optimize the training process,
we adopted the adaptive learning optimizer with lr = 10−3

and reduced the lr by 20% when the root mean square error
(RMSE) is sufficiently small (<0.12).

B. Performance of Depth Reconstruction

The qualitative results of the proposed method are shown
in Fig. 4, which includes seven different indoor scenes from
the NYUv2 dataset. The second column represents sparse
depth maps D0, which contain approximately 6000 points;
the third column represents predicted depth maps, and the
fourth column represents the ground truth. The red rectan-
gles indicate the discrepancies between the estimation and
the ground truth. As we can see in Fig. 4, the estimated
depth and the corresponding ground truth are significantly
similar in the close range (green) and far range (yellow). The
proposed method can obtain high-resolution outputs in regions
surrounding objects. Meanwhile, red rectangles between rows
1 and 7 mostly locate at planar areas, which are not commonly
captured by the active scanning mechanism. The degraded
performance on these regions is due to the lack of depth

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 29,2023 at 17:58:41 UTC from IEEE Xplore.  Restrictions apply. 



5018509 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

Fig. 4. Qualitative results of the proposed active fusion model.

information. In general, the proposed model performed well
on both centralized regions and noncentralized regions.

We compared the proposed method with depth estimation
approaches: CSPN [12] and sparse-to-dense [6], as shown in
Fig. 5. The experiment demonstrates that the proposed method
outperforms sparse-to-dense and CSPN in local regions sur-
rounding objects (red rectangles). It should be noticed that the
experiment was conducted for indoor scenes only, where the
normal depth distances is less than 10 m.

To compare depth estimation performance, we used three
different metrics that measure depth residuals: 1) RMSE,
ERMSE(D, D∗) = ((1/|D|)

∑
d∈D |d∗

− d|
2)1/2; 2) MSE,

EMSE(D, D∗) = (1/|D|)
∑

d∈D(d∗
−d)2; and 3) mean absolute

error (MAE), EMAE(D, D∗) =
∑

d∈D |d∗
− d|/|D|, where

D ∈ R304×228 is the predicted depth map, D∗
∈ R304×228

is the ground truth, and d, d∗ are corresponding pixels of
D, D∗. Beside residual measurements, we also evaluated
model accuracy using pixel relative similarities with pre-
defined thresholds. The method is known as delta, which
is defined as δt = max(d∗/d, d/d∗) < t , where t is a
threshold value and δt ∈ [0, 1]. The common choices for t
are {1.02, 1.05, 1.10}. Delta with lower values of t is much
more sensitive when comparing pixel similarity between two
depth maps.

Fig. 5. Comparison between three depth estimation methods: 1) adaptive
active fusion; 2) sparse-to-dense; and 3) CSPN.

TABLE I
QUANTITATIVE COMPARISON OF THE DEPTH COMPLETION MODELS ON

NYUV2 VALIDATION SET

Table I compares the performance of different depth esti-
mation methods. Residual metrics (↓) compute the difference
between depth estimation and ground truth. Smaller residual
values indicate better model performance. On the other hand,
delta metrics (↑) compute the similarity between the depth
estimation and the ground truth. Larger δt values indicate
that it is harder to visually distinguish differences between
the estimation and the ground truth. According to the table,
the proposed model obtains smallest residual values (EMSE =

0.003, ERMSE = 0.055, and EMAE = 0.019) and highest δt

values (δ1.02 = 99.9%, δ1.05 = 100%, and δ1.10 = 100%),
which demonstrate the outperformance over other methods.
More specifically, the proposed model achieves 1.6× better
residual values than CSPN, 11.3× better than sparse-to-dense
in MSE, and 7× better than the monocular model in RMSE.
The proposed model is the only method with over 99%
accuracy in the three scale t values.

We additionally evaluated the runtime performance of the
three models on the NYUv2 dataset. All the depth estimation
methods can produce dense depth maps within 0.2 s, which
is faster than average human reaction. More specifically, the
proposed method and CSPN can produce full dense depth
maps (304 × 228) within 5–19 ms, and sparse-to-dense model
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Fig. 6. Performance of model based on different depth scale inputs.

can produce a depth map within 0.8–4 ms. However, the depth
maps constructed from CSPN and the proposed method have
significantly higher resolutions than those from the sparse-
to-dense, demonstrating a trade-off between resolution and
real-time performance.

C. Robustness to Scanning Frequencies

To analyze the impact of the active scanning mechanism on
the accuracy of depth estimation, we retrained and evaluated
the proposed model using different sampling percentages.
We performed experiments on depth densities from 6000 to
20 000 nonzero pixels (which is ∼30% of the image pixels).
As we can see from Fig. 6, the larger the depth density, the
better the model performs. The model performance boosted
up by 3% (from 92.79% to 95.07%) on average in δ1.02
as the density increased from 6000 to 10 000. When the
depth map is sufficiently dense, the impacts of the active
scanning mechanism became negligible, which proves that the
mechanism can indeed discover useful information for depth
estimation, especially when the sampling frequency is low.

D. Point-Cloud Refinement

We evaluated point-cloud refining algorithms on the esti-
mated depth maps and compared the developed ISOR method
with the standard SOR filtering on five different indoor scenes
by runtime performance and D-mean accuracy. D-mean met-
rics are defined as d(P, P∗) = (1/2) · d ′(P, P∗) + (1/2) ·

d ′(P∗, P) where P, P∗ are origin point cloud and filtered
point cloud, respectively, d is D-mean point cloud distance,
and d ′(Ptarget, Pref) =

∑N
i=1 ∥pi −qi∥ is the Euclidean distance

between pi in target point cloud Ptarget and qi in Pref, which is
the closest point to pi . Additional outliers are added uniformly
into the point cloud at different scales.

The qualitative results of the two methods are shown in
Fig. 7. As we can see from the figure, the ISOR and SOR
methods can filter out “global outliers”—outliers that are
recognizable to not be a part of the origin point cloud. For less

Fig. 7. Qualitative results of the point cloud refinement methods.

obvious regions, we can see that ISOR and SOR methods agree
on which points are outliers. The major difference between the
two methods is that the SOR method filters harder than the
ISOR. The white strikes in the filtered results by ISOR are
generated by the local iterative computing.

We compared the runtime performance and accuracy (using
D-mean) of the two methods in Table II. The ISOR algorithm
runs faster than SOR algorithms in small- and medium-sized
point clouds. For the point cloud with a size 69 312 = 304 ×

228, ISOR took less than 1 s while SOR required 14 s. When
the point cloud scales to ≥1 00 000, the runtime performance
become a critical issue. As we can see, the results from
the ISOR method also have a smaller D-mean value in all
scenarios. By observing more complete and global context,
SOR removed much more points, which may be important
information. On the other hand, ISOR filters less points by
focusing on a local region, and thus, it runs fast and retains
more information.
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TABLE II
QUANTITATIVE COMPARISON OF TWO STATISTICAL OUTLIER REMOVAL

METHODS

Fig. 8. Prototype of the camera-LiDAR system. The Garmin LiDAR-lite
scanner rotates vertically and horizontally with defined angles, and the
RealSense sensor captures RGB frames.

E. Real-World Evaluation

To evaluate the depth estimation model in real-world sce-
narios, we first collected testing data using a single-point
depth estimation system. We have developed a prototype of
the camera-LiDAR system, which includes a single-point laser
scanner, Garmin LiDAR-lite v3, a RealSense D435i sensor,
a processor Raspberry Pi v3, and a secure digital (SD) card
for data storage, as shown in Fig. 8. The total cost for the
development of the system is less than US $300, and the
system is small enough to be mounted on a bicycle [23]. The
system contains two servo motors that rotate horizontally and
vertically to accumulate scanned points into 3-D point clouds.
The system can be controlled using MATLAB, Python, and
C++ programs. For the RGB channel, we used a RealSense
D435i sensor that captures both RGB and depth frames;
however, in this article, we only use the RGB channel of
RealSense, with 640 × 480 resolution configuration.

We collected RGB images and sparse depth maps in indoor
and outdoor environments using the developed LiDAR system
and evaluated the proposed method for depth estimation in
real-world scenarios. The results of the experiment are shown
in Fig. 9. The first column shows the obtained RGB images,
the second column shows the measured point clouds by the
RealSense sensor, and the third column shows the depth
estimation after ISOR filtering. Though the model was trained
on the indoor dataset, the estimated depth on outdoor scenes
(rows 6–9) matches the ground truth. In contrast, the depth
estimation in indoor scenes (rows 1–5 and 10) is much more
sensitive and noisy as compared with the outdoor scenarios.
The noise in the estimated depth map may be primarily caused
by the sensor noises and accumulated errors. The average
RMSE, MSE, and MAE of depth estimation for ten real-world

Fig. 9. Real-world performance of point cloud reconstruction in real-time.

office scenarios are 0.0942, 0.0107, and 0.0107, respectively,
as compared with the depth map measured by the RealSense
D435i sensor.

The performance of depth estimation model in real-world
scenarios seems to be worse than the performance on training
dataset NYUv2, both on indoor and outdoor scenes. It is
unlikely to be overfitting problem, since we integrated various
overfitting prevention techniques during training, such as early
stopping (with patience = 10). One possible reason for such
low performance in real-world scenes is the maximum distance
used in the training dataset. More specifically, in NYUv2
indoor scenes, depth distances are between 0 and 10 m.
Meanwhile, our captured outdoor scenes have depth values
beyond this interval.

V. CONCLUSION

This article presented a novel depth estimation method
using cost-efficient camera and single-point LiDAR sensors.
We have shown that the active scanning mechanism helps
improve the performance of depth estimation while reducing
the requirement of depth scans. Through experiments, the
active scanning mechanism and the depth estimation method
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have been proved to be effective in terms of accuracy and
computing speed. The method was designed for indoor envi-
ronment with a maximum depth distance of 10 m. In addition,
the system is currently not suitable for dynamic environments,
due to the hardware limitations of the single-point LiDAR.
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