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• Enhanced Peukert capacity model for
electric vehicles including tempera-
ture effects.

• Five different cathodes and two types
of crystal structures tested.

• Comparative analysis highlights un-
ique discharge effects for lithium ion
cells.

• Model parameters largely follow pat-
terns consistent with chemistry litera-
ture.

• Absolute capacity factor improves un-
derstanding of remaining energy
stored.
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A B S T R A C T

Numerical models for battery management systems must be computationally efficient with enough accuracy for
predictive usage when the vehicle is operating. For electric vehicles (EVs), this requires accounting for capacity
offset, temperature dependency, and battery aging effects. This effort provides an enhanced formulation of
Peukert's equation including temperature effects and the inclusion of an absolute capacity that is calibrated to
five different cathodes (LiCoO2, LiCoNiAlO2, LiNiMnCoO2, LiMnNiO2, and LiFePO4) with two types of crystal
structures (layered and olivine) from four manufacturers. After data collection using a Vencon battery analyzer
and two thermistors measuring self-heating temperature swings, the results demonstrate that the model works
relatively well in predicting the State of Charge curve. As expected, the capacity specific parameter is near unity
when simulating low offset olivine compounds; whereas, the temperature dependent variable illustrates a wide-
range of values with cobalt constituted chemistries on the higher end. Additionally, the model tends to perform
better for non-spinel compounds and that manufacturer specified nominal capacities are around 95–99% of the
model defined absolute capacity. Overall, the technique of separating current and temperature based phenomena
and recognizing modeled patterns that align with current literature are useful steps in developing an efficient
battery model.

1. Introduction

Investigating the general trend of sales for plug-in Electric Vehicles
(EVs) in the United States, after the initial rise from 2010 to 2014,

consumer purchases have started to level off [1]. One potential reason
that continued growth is not seen is because range anxiety is still an
issue [2]. While research is underway for next generation battery
technologies with higher energy densities, they are still years away
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from implementation in a commercial vehicle. Therefore, in order to
facilitate a greater range with current battery chemistries requires the
on board Battery Management System (BMS) to predict the capacity left
within a battery pack more accurately. This requires highly efficient
models that have low computational cost. In this area, Peukert devel-
oped one of the first models for lead-acid batteries through the for-
mulation of his famous equation [3]:

=C I tP
k (1)

where CP is the capacity at 1-A discharge rate in [Ah], I is the current in
[A], k is an exponent multiplier, and t is time. The simplicity of its
formulation allows for straightforward implementation with little
computer processing required and the basic idea is to relate the capacity
of the battery to its discharge rate. Specifically, as the discharge rate
increases, ohmic losses increase, and ion diffusion/migration in the
electrodes cannot catch up with an increasing discharging current re-
sulting in a lower recovery rate and, eventually, a smaller battery ca-
pacity. The exponent k (i.e., Peukert's constant) should be near one for a
well-performing battery. With respect to lead-acid batteries, often this
value is 10%–30% greater than one [4]. When investigating modern
lithium-ion batteries, even though high discharge rate currents can lead
to side chemical reactions, material phase and structure transitions
along with growth of internal cell resistance [5–8], k is found to be
close to one [9].

While other options exist for simulating batteries with higher fide-
lity, like electrochemical equations [10], multi-layer neural networks
employing machine learning [11,12], and cell equivalent circuits
[13–15], the simplicity of use and uncomplicated calibration of Peu-
kert's equation provides for continued interest if errors with its im-
plementation can be mitigated. Hence, a prior effort involved a re-
invention of this equation to account for temperature effects and the
inclusion of an absolute capacity [9]. In general, this absolute capacity
is designed to remove the relative randomness of nominal capacity
(e.g., a 20-hr rate) while also accounting for the fact that batteries
undergoing high discharge rates still have capacity remaining when the
discharge rate is reduced [16,17]. Moreover, if able to simulate the
battery correctly, this absolute capacity allows for potential im-
plementation of battery aging by simply degrading a single factor with
vehicle life (e.g., capacity loss for LiFePO4 batteries [18]). An analogy
can be drawn to the catalyst modeling field where Oh and Cavendish
implemented a single parameter to account for the sintering of precious
metals (i.e., catalyst aging) over time [19].

The previous effort illustrated that under changing temperature
environments, vehicle size batteries (60–100 A h) were able to be suc-
cessfully modeled using this updated model [9]. However, that work
simulated only a single known chemistry (LiFePO4) using three dif-
ferent battery manufacturers with one unknown chemistry also tested.
Therefore, this effort investigates five different cathode materials
(LiCoO2, LiCoNiAlO2, LiNiMnCoO2, LiMnNiO2, and LiFePO4) with two
types of crystal structures (layered and olivine) for lithium ion batteries
from four manufacturers. The battery capacities are between 1.1 and
3.1 A h consisting of experiments ranging from 0.5C to 1.25C. Of note,
use of this conventional C-rating based on manufacturer-supplied

nominal values allowed for consistency between tests. The following
sections first present the experimental setup and methodology em-
ployed for data collection along with the revised model. Then, a dis-
cussion revolving around the differences between the chemistries tested
follows the provided results including optimized model constants.

2. Materials and methods

In order to understand how lithium ion cathodic chemical kinetics
influences capacity consumption, we selected two types of crystal
structures and five cells with different cathode materials. Cost and
equipment limiting factors led to the decision to use small 18650 sized
batteries that are 18mm in diameter and 65mm long and can store
1–4 A h. Table 1 lists the five cells tested along with basic battery
specifications and Fig. 1 illustrates the two types of crystal structures
employed. Their classification is based on the dimensionality of the Li+

ions transport during de/intercalation, in which Li+ ions are trans-
ported through one-dimensional (1-D) (olivine) and two-dimensional
(2-D) (layered) compounds. As illustrated in Fig. 1, the olivine com-
pounds, e.g., Li [M]PO4 (M=Fe, Mn), consist of a 1-D channel of Li+

ions transported within a distorted hexagonal closed-packed (HCP)
oxygen framework, which contains Li and Fe located in half the octa-
hedral sites and P ions in one-eighth of the tetrahedral sites [20]. In
comparison, the layered compounds, e.g., Li [M]O2 (M=Co, Ni), have
the oxygen ion close-packed in a cubic arrangement with the transition
metal elements and Li+ ions occupying the octahedral sites [21], where
the Li+ ions are transported via 2-D planes. The specific cathodes under
study are lithium cobalt oxide (LiCoO2), lithium nickel cobalt alu-
minum oxide (LiCoNiAlO2), lithium nickel magnesium cobalt oxide
(LiNiMnCoO2), lithium magnesium nickel oxide (LiMnNiO2), and

Table 1
Basic parameters of the lithium-ion batteries under study.

Name Cathode Chemistry Crystal Structure Manufacturer Part Number Nominal Capacity [Ah] Nominal Voltage [VDC] Voltage Range [VDC] Max Load [A]

LCO LiCoO2 Layered LG ICR18650C2 2.8 3.7 3.0–4.3 4.0
NCA LiCoNiAlO2 Layered Panasonic NCR18650A 3.1 3.6 2.5–4.2 6.0
NMC1 LiNiMnCoO2 Layered LG ICR18650B4 2.6 3.6 2.8–4.2 5.0
NMC2 LiNiMnCoO2 Layered LG ICR18650S3 2.2 3.6 3.0–4.2 3.2
LMN LiMnNiO2 Layered LG LMN18650-2000 2.0 3.6 3.0–4.2 2.0
LFP1 LiFePO4 Olivine A123 APR18650M1-A 1.1 3.3 2.0–3.6 30.0
LFP2 LiFePO4 Olivine A123 IFR18650P120 1.2 3.2 2.0–3.65 18.0
LFP3 LiFePO4 Olivine AA LFP-22650-2500-16C 2.5 3.2 2.0–3.65 12.5

Fig. 1. The two types of crystal structures (top: olivine; bottom: layered) em-
ployed in this analysis.
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lithium iron phosphate (LiFePO4). For convenience, Table 1 refers to
them by the following names: LCO, NCA, NMC, LMN, and LFP, re-
spectively.

The choice of these cathodes focuses on the state of the art for EV
usage. Specifically, Chevy Volt employs an NMC-LMO (LiMn2O4) for-
mulation [22] and so do a number of other manufacturers [23]. How-
ever, because of the advanced nature of LMN batteries in contrast to the
LMO chemistry (e.g., LMN's higher energy density [24]) along with the
fact that Nissan Leaf utilizes this distinct chemistry [25], LMN was se-
lected for testing. Of note, analogous research by Dubarry et al. [26]
finds that Peukert's equation has been applied to LMO batteries; hence,
there does not appear to be a limit to the modeling methodology dis-
cussed here for spinel structures. In comparison, Tesla uses the NCA
battery chemistry [27]; whereas, LFP is employed for mobile applica-
tions in China [28]. Furthermore, the use of LCO helps to understand
how the addition of particular species (i.e., cobalt, nickel, aluminum,
and manganese) can alter discharge and temperature profiles. In ad-
dition, analysis of multiple examples of LFP and NMC types occurred
because EV research projects at the authors' university involve these
specific chemistries (e.g. [29]).

Data collection used a Vencon (Vencon Technologies Inc., Toronto,
Canada) UBA-5 battery analyzer (Fig. 2) that applies graphically de-
veloped charging and discharging routines entered via a personal
computer to which the UBA-5 then prints the results via a comma se-
parated variable file. The basic idea behind each program is to load the
cell to its low cut off voltage and then charge to its maximum safe
voltage (i.e., 100% State of Charge (SOC)). After a 1 h rest to achieve
equilibrium, application of the desired load happens until the cell
reaches the low cut off voltage once again (i.e., 0% SOC). At the end of
each test, the Vencon recharges the cells to 30% SOC for safe storage.
For this effort, three different loads are applied to a battery with charge
events and rests in between to allow for chemistry equalization and the
temperature to return to ambient conditions. Moreover, control of each
step utilizes specific parameters depending on the battery specification
(e.g., maximum C-rating) and test desired.

Although cell temperature is not a controlled variable here, self-
heating can affect capacity drain [30]. Hence, two Philips (Philips
Electronics N.V., Amsterdam, Netherlands) model SN74LS04 thermis-
tors capture the extent of self-heating for these tests. Consistency be-
tween all experiments required using discharge C-Ratings of 0.5, 0.75,
1, and/or potentially 1.25 (if allowed by manufacturer specifications)
based on the maximum load information in Table 1. This ensures
testing the batteries under relatively similar events even if their nom-
inal capacities are different. For instance, choosing a 1.1 A discharge

rate for LFP1 and NCA would result in significantly different C-Ratings
(1C and 0.35C, respectively) and potentially dissimilar internal chem-
istry effects.

As indicated, experimentation employed the high and low safe
voltages in order to test over the entire range of battery capacity. In
regards to this concept, Andrea addresses the issue of varying battery
capacities during dissimilar discharge events by separating definitions
of SOC and Depth of Discharge (DOD) [31]. In specific, SOC is always
between 0 and 100% regardless if there is energy in the battery after a
discharge event. This value is explicitly defined via voltage points and
its rate of change is not computationally definable. However, measuring
the DOD in Ah and analyzing the time rate of change of the DOD allows
for better control and an understanding of a battery's behavior. Along
these lines, rather than rating battery capacity based on a usage time
(e.g., 20-hr rate capacity in Table 1), this effort outlines a new defini-
tion of absolute capacity. Specifically, a battery will always contain a
remaining maximum available capacity (Cr) as specified in discrete-
time where t represents the discrete-time instant, and t+1 differs from t
by the time step taken (i.e., Δt):

= −+C C ΔCr
t

r
t

r
1 (2)

Here, the absolute capacity Cr
0 of a fully charged battery is at time equal

to zero. The remaining capacity is absolute after a known discharge
event and allows for future predictions, regardless of the potential
discharge conditions. The last term in the equation is what varies based
on the specific environment and use, giving this model its versatility
and accuracy. In short, at any one time, the remaining capacity is fixed
but the rate it decreases varies as a function of load (i.e., capacity offset)
and temperature.

Capacity offset via Peukert's equation is modified here to be non-
dimensional via a reference current (Iref) of 1 A. Similar to Peukert's
constant (k) in Eqn. (1), a constant alpha (α) impacts the discharge rate:

⎜ ⎟= ⎛
⎝

⎞
⎠

ΔC I I
I

( )r
ref

α

(3)

Based on Eqn. (3), the conclusion can be drawn that a battery that is
unaffected by capacity offset has an exponential value of one.

The more debated property of capacity modeling is the temperature
dependency. A brief understanding of chemistry demonstrates the sig-
nificance of the kinetic parameters that govern a reaction's behavior.
These include, but are not limited to, temperature, pressure, and energy
input and can affect the kinetic reaction and diffusion occurring si-
multaneously inside batteries [32,33]. More importantly, the degrada-
tion of battery is not only location-dependent but temperature-depen-
dent [34,35]. This elucidates the idea that inclusion of temperature-
based effects is crucial when investigating batteries. Our previous stu-
dies acknowledge this need; however, the exact relationship is unclear
[16,36]. Both thermal energy conservation and Arrhenius equations can
describe the changes of battery temperature and temperature-depen-
dent physicochemical properties; however, they are generally numeri-
cally expensive. Previous experimental verification has expressed that
capacity drain rate increases as the cell temperature decreases (cold
temperature increases the internal resistance), inversely to amperage
[9]:

⎜ ⎟= ⎛
⎝

⎞
⎠

ΔC T
T
T

( )r
ref

β

(4)

where the term is made dimensionless by scaling it by a reference
temperature (Tref) of 298 K. The exponential constant (β) is analogous to
α in Eqn. (3) and drives the temperature relationship. Due to the
common use of graphite as an anode, the temperature effects in large
automotive lithium-ion batteries vary mainly based on their cathode
and electrolyte materials. This can largely outweigh the load offset or it
can be nearly negligible with experimental ranges for β values between
0.3 and 3.0 [9].

Fig. 2. Picture of the experimental setup highlighting the use of the Vencon
UBA5 battery analyzer for data collection.
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Tying the two dimensionless relationships to the discharge rate
simply requires one more term. From Eqn. (2), the instantaneous dis-
charge rate (ΔCr) is measured as capacity in amp-hours; therefore, its
magnitude must be scaled by a constant presented by γ:

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ΔC γ I
I

T
T

Δtr
ref

α
ref

β

(5)

The choice of combining the two factors of Eqn. (3) and Eqn. (4)
into Eqn. (5) through multiplication stemmed from the fact that both
current and temperature influence capacity offset in a similar manner.
As current increases and temperature decreases, capacity offset grows.
It is assumed that these effects are multiplicative rather than additive
because of the exponential impact of temperature on chemical reaction
rates [37]. Generally, under C-Ratings that are representative of EV
usage (e.g., 1C [38]), capacity offset and self-heating are intrinsically
linked. Even when employing extremely high convective cooling rates
in order to attempt to maintain a singular temperature for testing, there
still could be a temperature difference between center and surface
temperatures [39]. Therefore, the choice was made to compare the
levels of self-heating based on chemistry while using the multiplication
dependency in Eqn. (5) for modeling purposes. Future work can en-
deavor to isolate these effects using temperature-controlled chambers.
In addition, this multiplicative option prevents the inclusion of another
constant to calibrate helping to reduce the possibility of local mini-
mums during optimization.

Prior usage of Eqn. (5) wrapped the time term (Δt) into the scaling
term (γ) [9], yielding its units as Ah. This suffices to balance the re-
lationship physically; however, it becomes problematic when using the
equation elsewhere. While applying past knowledge to a new form of
testing, the authors found benefit in separating out the time term re-
sulting in Eqn. (5) helping to illustrate perfect battery characteristics;
i.e., α and γ equal to one with β equal to zero. Hence, a 100 A h perfect
battery discharged at 5 A will result in a Δt equal to 20 h. Therefore, the
parameters of Eqn. (5) illustrate the deviation away from ideal attri-
butes. The inclusion of units on γ (amps) is simply a matter of balancing
the units of this equation to allow for relative comparison of batteries.
In particular, γ now has a consistent unit for comparison since following
Peukert's equation would result in units of amps1−α. In a perfect sce-
nario, the nominal rating supplied by the battery manufacturer would
equal the absolute capacity, Cr

0. This absolute capacity is the point at
which a BMS will define as 100% SOC and Eqn. (5) illustrates how
software will decrease this value during operation. The use of this
model requires data collection over many test conditions and iterations
giving rise to calibration of the four parameters: α, β, γ, and Cr

0. How-
ever, once known for a given battery chemistry, the BMS can accurately
rely on the SOC value in a multitude of driving conditions.

Therefore, after obtaining an experimental data file containing
measurements of voltage, amperage, and temperature on a second-by-
second basis, post-processing using MATLAB (MathWorks, Inc., Natick,
Massachusetts, U.S.A.) calculated changes to battery capacity and its
SOC for model calibration. For example, a sample SOC calculation of
the LMN battery (2.0 A h) during a 0.5 C test is useful to understand the
Peukert analysis methodology:

a) C0= 2 (rated nominal capacity)
b) I1= 2 A h×0.5 hr−1= 1 A (amperage draw corresponding to 0.5 C

test)
c) SOC0= 100% (starts fully charged)
d) Initial capacity: Cap0= SOC0× C0= 2.0 A h
e) Time step of 60 s: Δt=0.01667 h
f) Experimental capacity lost over time step: Caplost= I1× Δt=1

A×1.667E-2 hr= 1.667E-2 A h
g) Capacity after time step: Cap1= Cap0 – Caplost=2.0 A h – 1.667E-

2 A h=1.983 A h
h) SOC after time step: SOC = Cap1/Cap0= 99.16%

However, this effort uses a new definition and calculation for steps
(d) and (f), respectively. Specifically, a replacement of the initial ca-
pacity with Cr

0 and that the capacity lost over the time step now em-
ploys both the amperage draw and thermistor measurement. Hence,
step (f) is now dependent on γ, α, and β via Eqn. (5).

Subsequently, calibration of the model parameters utilized the
Matlab function fmincon employing the interior-point option that
minimized a nonlinear Least-Squares Curve-fit (LSQ) comparison be-
tween model predicted final DOD and the experimental result of 100%.
As a starting point for calibration, the researchers assumed that the
battery holds the rated capacity; therefore, the initial values of Cr

0 were
set equal to the manufacturers' Ah ratings. The logic of capacity offset
dictates that α be near or just above one; hence, the initial α was set
equal to one. The β term dictates temperature behavior and the initial
guess here is set equal to zero in order to predict a perfect battery in-
dependent of temperature effects. From this information, γ can be in-
itially estimated from each experiment and an average γ was used as the
starting point for calibration.

3. Results and discussion

It is imperative to the user of batteries in a mobile application that
they trust the instrumentation's prediction of “empty” to alleviate range
anxiety. Therefore, modeling the rate of capacity drain with respect to
load and temperature is a crucial facet when simulating Li-ion batteries.
Here, Table 2 provides calibrated model parameters as a function of the
five distinct battery chemistries tested. In this table, a row containing

Table 2
Model parameters of tested Li-ion batteries after calibration to experimental data.

Battery Name Nominal Capacity [Ah] Cathode Chemical Formula Cr
0 multiplier γ α β LSQ

LCO 2.8 LiCoO2 100.13% 0.8969 1.4374 0.0209 0.3008
100.55% 0.9844 1.2118 1.3543 0.0544

LCO retest 2.8 LiCoO2 112.39% 0.9891 1.5143 0.0000 0.6657
100.62% 1.0016 1.2423 0.0037 0.0655

NCA 3.1 LiCoNiAlO2 100.58% 1.1025 1.0456 0.7617 0.0523
100.64% 1.1019 1.0469 0.6826 0.0498

NMC1 2.6 LiNiMnCoO2 101.10% 0.9891 1.0530 2.6969 0.0991
NMC2 2.2 LiNiMnCoO2 100.16% 0.9161 1.6806 0.0133 0.3685

100.43% 1.0127 1.1868 1.7464 0.0351
NMC2 retest 2.2 LiNiMnCoO2 85.59% 0.9506 1.5857 0.0030 0.4208

101.27% 1.0323 1.2822 0.0424 0.1367
LMN 2.0 LiMnNiO2 100.63% 1.0079 1.1664 1.8943 0.2102

100.40% 1.0108 1.0919 0.7676 0.0265
LFP1 1.1 LiFePO4 100.04% 1.0193 1.0093 0.0081 0.0091
LFP2 1.5 LiFePO4 105.09% 1.0726 1.0232 0.0030 0.0313
LFP3 2.5 LiFePO4 101.35% 1.0411 1.0287 0.2483 0.0063
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two lines means that certain experimental data points were omitted in
the second row based on discussed observations. Of note, in order to
provide a truer comparison between the model and experiments, the
figures presented provide the results as a function of an experimental
normalized DOD; i.e., the final DOD scales all experimental results so
that they end at 100%.

In general, layered compounds are isostructural to the layered fra-
mework with the O2− packed in a cubic and the transition metal ele-
ment (e.g., Co, Ni) and Li+ occupying the octahedral sites of an “O3-
type” structure with a stacking sequence ABCABC. For layered com-
pounds, e.g., the LCO battery, testing demonstrated in Fig. 3a that this
battery is highly dependent on the C-rating. As discussed by Zhang et al.
for LCO batteries the movement of a significant number of lithium ions
relatively quick prevents a phase transition and equilibrium between
ordered and disordered lithium ions in the CoO2 crystal [40]. Hence,
one does not see the typical lithium plateau under high discharge rates.
Moreover, with respect to temperature, the LCO battery was found to
generate a respectively significant amount of heat in Fig. 3b. Nitta et al.
point out that this characteristic thermal instability is due to the re-
leased oxygen reacting with the organic materials during cycling. The
self-heating due to the ion diffusion causes oxygen to react exother-
mically with the cathodic and electrolytic compounds [41]. Then, this
action releases more heat into the system, which is the basis of the
thermal run away and potential combustion effects mentioned prior.
Other work by Doughty and Roth show that most species decompose
and introduce self-heating oxygen into the system. However, the LCO
chemistry does this at a lower temperature and at a faster rate than
others, while the stable LFP seems to maintain its oxygen in its non-
reactive state [42]. The reason for this perceived instability follows

delithiation of the LCO framework during the phase change. Further-
more, with LixCoO2 (x < 0.5) a secondary exothermic peak is reached
as the structure abandons a layered state and forms a more spinel lattice
with the cubic symmetry (space group Fd3m). As in other phase change
reactions, this indicates a unique outlet of thermal energy [43]. Overall,
understanding the implications of thermal instability is important in
determining the limitations of this compound along with its relative
temperature functionality in Eqn. (5).

Specifically, the choice of the multiplication factor for Eqn. (5)
stemmed from the fact that both the current and temperature influence
capacity offset in a similar manner. As current increases and tempera-
ture decreases, capacity offset grows; therefore, when temperature in-
creases, battery capacity grows. Under high currents (i.e., the C-rating)
during discharge, LCO batteries do not undergo a phase transition re-
sulting in a relatively quick loss of capacity [44]; however, the tem-
perature grows relatively rapidly because of its characteristic thermal
instability. This rapid rise of temperature could lead to entropy changes
that originate from a structural transformation in the anode and phase
transition of the LCO cathode [45], which help to retain/recover the
cell's capacity to some extent.

Initial optimization of all tests in Fig. 3c resulted in a relatively high
LSQ owing to the fact that the 1.25C tests provided less than 50% of the
rated capacity. Considering that possibility the battery was tested at too
high a C-rating (although within the manufacturer's specification),
these data were removed from the optimization resulting in a better fit
of model and data via Fig. 3d with the corresponding parameters given
in the second row of Table 2. Furthermore, to ensure that the battery
was tested properly, it was retested a number of months later after the
first LFP battery (shown with high testing accuracy later in this section).

Fig. 3. Initial testing of LCO battery providing experimental (a) voltage and (b) temperature versus amp-hour rating along with model results as a function of depth of
discharge for (c) all runs and (d) select data points. Note: the legend indicates the date (e.g., month-day-year) and C-Rating of each test.
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Interestingly, the same issues that arose at 1.25C were found with the
later tests (presented in the Supplemental Information). Performing an
optimization over just the retests found a high degree of error for the
model as demonstrated by the corresponding LSQ in Table 2. Removing
the 1.25C retests and optimizing over all 0.5C and 1C tests (except for
an assumed outlier) was able to model these data relatively accurately
via second row of LCO retest in Table 2.

Overall, with increasing C-rate the LCO cells experienced a high
overpotential in not only the electrode, but the electrolyte, which could
cause the discrepancy. In addition, the retested cells were aged under
both cycling and storage conditions; hence, this discrepancy may imply
the adverse effects of battery aging and degradation. Of interest, the β
parameter changed significantly between the first optimization and the
second. Looking at the raw data, the battery heated up relatively the
same amount between these distinct tests (est. 20 K vs. 15 K at 1C for
initial and retest, respectively), but optimization placed more of an
emphasis on the α parameter. A relative conclusion as to α versus β
dependency for this battery will be revisited later in this section.

In Fig. 4, testing of the NCA battery demonstrated a higher level of
repeatability than the LCO battery. Investigating individual experi-
ments, only the 2-11-16 test employing a 1C discharge rate demon-
strated an erroneous step voltage change around 2 A h in Fig. 4a; hence,
representative optimized model results are shown including it in Fig. 4c
and removing it in Fig. 4d (with corresponding rows in Table 2).
Moreover, a 0.9C test was run instead of a final 1.25C test by oversight
with its results kept in both optimization efforts. The results of the tests
point towards the need to understand the geometry and underlying
chemical behavior involved in the NCA cells. Overall, the literature

underlines the inherent stability found in these species. Current tech-
nologies employ aluminum-doping of a base LiNiCoO2 cathode and this
additional presence of 0–5% Al suppresses the cell impedance rise as-
sociated with the surface reactions between the cathode and electrolyte
without sacrificing capacity [46]. This benefit is attributed to the shape
of the particles on the surface of the cathode. It makes sense that
rounded particles with a low surface-area-to-volume ratio help limit the
available area for the electrolyte to interact with, for a given volume.
The effect of Al-doping forms a desirable “powder morphology”; i.e.,
tightly packed, spherical particles that are well suited to limit the solid-
electrolyte-interface (SEI) surface area resulting in a stabilized cell [46].
Furthermore, the consistency of the discharge curves shown in Fig. 4
and the literature's stated stability both indicate high cycle ability; i.e.,
a low loss of capacity over many cycles. For example, Zhang and Wang
performed long term cycling (> 5000) using the NCA cathode and
showed capacity fade on par with 1000 cycles of other chemistries [47].
They attribute this to the fact that in most batteries, capacity fade is due
to a decrease in the number of intercalation sites on the cathode. This is
a characteristic that the NCA does not demonstrate, resulting in low
capacity fade.

However, while the NCA species has many desirable characteristics
if properly used, the effects of elevated temperatures (Fig. 4b) are a
drawback. In particular, Huang et al. compared the thermal stability of
many common cathodes and state that at high SOCs, the low Li con-
centrated NCA starts to decompose around 200 °C resulting in a highly
exothermic event with the potential for a dangerous thermal runaway
[48]. In addition, transition metal ions (e.g., Mn2+, Co2+) tend to
(particularly at elevated temperatures) dissolve into the electrolyte,

Fig. 4. Testing of NCA battery providing experimental (a) voltage and (b) temperature versus amp-hour rating along with model results as a function of depth of
discharge for (c) all runs and (d) select data points. Note: the legend indicates the date (e.g., month-day-year) and C-Rating of each test.
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induce oxygen release, and increase cell resistance, which further ele-
vates battery temperature and degrades its capacity. Moreover, the
capacity fade of NCA can be severe at an elevated temperature due to
electrochemical cycling-induced material fatigue and failures, such as
cracking at NCA grain boundaries [49].

Testing the first NMC battery found an extremely repeatable set of
data across all tests in Fig. 5. As a result, optimization performed over
all runs resulted in relatively good model matching. The characteristics
of the curves indicate a lower temperature rise as compared to the si-
milarly constructed LCO cells. Incorporating Ni and Mn in place of Co is
a common technique as both are cheaper than Co with Mn being sig-
nificantly less hazardous. In comparison, Gotcu et al. experimentally
determined the heat capacity and thermal diffusivity of NMC cathodes
and found it to be higher than LCO, subsequently resulting in an in-
creased heat transfer and storage [50]. Analogous to Furushima et al.
[51], they were able to show that this increase in thermal conductivity
is more pronounced in delithiated samples, corresponding to a fully
charged battery where thermal runaway is of concern. All of these as-
pects lead to a reduced temperature rise for NMC batteries and higher
onset temperature for self-heating.

In addition to the more desirable thermal attributes associated with
substituting these other transition metals in for Co, there exist some
drawbacks. One major problem is to determine the cation mixing be-
tween nickel and lithium ion because their radii are close, Ni2+

(0.69Å) vs. Li+ (0.76Å). Specific capacity can be diminished by the
presence of Ni atoms in the Li-ion layer, made possible due to their
relatively similar sizes. In addition, the lower electronegativity of Mn
decreases the overall voltage potential as seen in Fig. 5. Since NMC
batteries form a framework similar to CoO2, the prior discussion

involving the lack of discharge plateauing demonstrated by Zhang et al.
is valid here. Moreover, as indicated by Li et al. the transition between a
layered Li2MnO3 lattice and a MnO2-like phase under higher charging
and discharging rates might be rate limited (i.e., slow kinetics) [52].
Overall, the drawbacks associated with introducing Ni or Mn alone
appear to be offset by each other's benefits while thermal stability in-
creases as more Co atoms are replaced with Ni and Mn atoms [53].

Interestingly, analyzing the second NMC battery from the same
manufacturer found a drastically different outcome as a function of
current in Fig. 6; whereas, it appears that the temperature rise was
fairly consistent between the two batteries. This battery could not
handle 1C experiments with a loss in capacity of over 50% in one case.
Moreover, the 0.5C test on 8-24-16 was found to have a sudden voltage
drop for no reason. Similar to the LCO trials, a second set of data was
taken for this battery later to see if better results could be generated.
This later test (provided in Supplementary Information) demonstrated
even bigger swings in repeatability with the 1C tests dropping into the
30% capacity range. Calibrating across all data found a significantly
large error since the data had substantial variability. Removing the
apparently erroneous trials helped to increase the model accuracy, al-
though not to the point of the first NMC battery tested. Analogous to the
LCO testing, this reduced repeatability resulted in a greater α calibrated
parameter with the influence on β dropping. This makes sense after
reviewing the NCA and NMC1 tests that had α parameters closer to
unity. It is theorized here that those batteries were manufactured with
tighter tolerances; hence, they become more repeatable when testing as
a function of current. Moreover, via a thermal analysis of NMC as
published recently, the battery self-heating rate closely relates to both
SOC and State of Health (SOH) that influences the reaction kinetics

Fig. 5. Testing of NMC1 battery providing experimental (a) voltage and (b) temperature versus amp-hour rating along with model results as a function of depth of
discharge for (c) all runs. Note: the legend indicates the date (e.g., month-day-year) and C-Rating of each test.
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[54]. Therefore, the changing temperature with discharge current be-
gins to play a larger role in modifying the capacity of these batteries.
More importantly, it is essential and critical to monitoring and tracking
the SOH of these batteries. Although the SOH may not directly corre-
spond to a particular physical parameter, many researchers use Elec-
trochemical Impedance Spectroscopy (EIS) to investigate the battery
cell's degradation occurring not only in the electrodes but also in the
electrolyte. Whereas, for the LCO and NMC2 batteries, the variance in
day-to-day tests with current are reflected in a greater α that sig-
nificantly overshadows the effects of temperature. This illustrates the
need to test all batteries to determine their respective α and β values
before implementing in an electric vehicle instead of relying on a lit-
erature source. Furthermore, taking additional data can provide para-
meters that are more accurate by helping to reduce standard deviations
in the tests.

Fig. 7a illustrates that the LMN battery had two repeatable days
with one day demonstrating a reduced capacity. Moreover, in Fig. 7b
the battery had a significant reduction in heat generation. The overall
optimized results in Fig. 7c are skewed by the one dissimilar day and
removing these data ended in generating a low LSQ error for the model
in Fig. 7d. Overall, similar behavior to the NMC cathode is shown due
to LMN's analogous chemistry. Specifically, the presence of Ni and Mn
atoms increase thermal conductivity and specific heat properties, sub-
sequently minimizing temperature rise. However, the absence of Co
atoms in the lattice is a significant aspect as Co allows a more spinel
shape to form. It is correct that LiMn2O4 forms a truer spinel, but the
addition of Ni atoms restrain the Mn ions to the +4 oxidation state and
avoid unwanted lattice distortion and energy loss [55]. Spinel struc-
tures mark a definitive difference in this species as it allows for three-

dimensional movement of Li-ions. Although difficult to tell from the
data, the spinel lattice theoretically produces a greater specific capacity
because it avoids the tendency of ions to skip empty sites, which is more
common in the layered structures. This aspect combined with its
thermal stability makes LMN more desirable in certain applications.

Generally, olivine compounds (e.g., LFP batteries) possess a dis-
torted hexagonal close-packed structure where Li and Fe ions located in
half of the octahedral sites and P occupying one-eighth of the tetra-
hedral sites, as shown in Fig. 1. The testing of the LFP batteries found
consistent results between all batteries in Fig. 8 and in the Supple-
mental Information. Except for an unknown dip in voltage for one test
at 0.5C with LFP2 and the 1C and 1.25C tests with LFP3, all LFP vol-
tage, temperature, and model profiles were similar. Moreover, this
battery chemistry heated up the least amount. Hence, both α and β
parameters were low since repeatability was high and temperature did
not significantly influence the findings. This is because LFP batteries are
less affected by the discharging rate because of their enhanced Li ion
insertion and extraction along with improved electrode kinetics [6].

Due to the consistent behavior of the olivine species, the researchers
observed an interesting phenomenon. The strategy to normalize the
load for each cell (i.e., using C-ratings) should produce similar loading
behavior regardless of cell size. However, upon initial loading of the
highest power test, each of the different capacity LFP batteries studied
displayed dissimilar voltage drops. This variance demonstrates dis-
tinctive reactionary stresses that develop in the SEI that are not
straightforward. As mentioned before, significant effort in under-
standing the effects of different internal resistances is under current
pursuit. Of interest here is the SEI resistance that can suffer from
crystallization and other side reactions or physical failures, such as

Fig. 6. Testing of second NMC battery providing experimental (a) voltage and (b) temperature versus amp-hour rating along with model results as a function of depth
of discharge for (c) all runs and (d) select data points. Note: the legend indicates the date (e.g., month-day-year) and C-Rating of each test.
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“drying out” or gas generation and dissipation [56]. The inconsistencies
in these data may reflect the initial use of the manufacturer supplied “C-
rating” in the experimental set up; however, this aspect is included in
the model. Hence, further research is necessary to understand initial
loading behavior and its relationship with capacity and size, and the
improved model seems to be a useful tool in this pursuit.

Overall, this attempt to remove the temperature factor from the
standard Peukert coefficient (α) and instead correlate it to the phe-
nomena of ionic diffusivity and electron resistance in both the cathodic
structure and electrolyte solution encountered limited success. Those
batteries tested with some repeatability (NCA, LMN, NMC1, and LFP)
demonstrated functional β dependencies. While the battery that heated
up the least (LFP) had the lowest β term, there was not a direct corre-
lation between β and the other chemistries (i.e., temperature rise:
NCA > NMC1 > LMN, but β: NMC1 > LMN > NCA). For the other
batteries (LCO and NMC2), the inability to repeat data points skewed
the results towards the α term, subsequently removing the functional
temperature dependency. Moving forward, taking more tests to remove
the standard deviation in experimental data should help determine
more accurate model parameters. Moreover, correlating the repeat-
ability to (assumed) manufacturing tolerances would help place these
findings in a better light. Furthermore, enhanced modeling techniques
using multi-scale computational methods can help understand the mi-
crostructure evolvement and (de)lithiation induced phase transforma-
tion during the (de)intercalation processes [57] helping to construct
better batteries while translating their results to more simplistic models,
such as the one employed here. Finally, by scaling all experimental data
to end at 100% DOD, this results in relatively good agreement between
data and the model. This is because the model was designed to end at

100% DOD through its use of an absolute capacity that helps normalize
all distinct discharging scenarios. From an on-board vehicle perspec-
tive, now a voltage map as a function of discharge rate and DOD can be
employed along with the enhanced Peukert model in order to more
accurately predict the range left in the batteries.

4. Conclusions

A main obstacle in further adaptation of the current electric vehicle
market is range anxiety, but mitigation of this condition can occur
through proper battery modeling. Previous research has elucidated the
efficacy of an enhanced Peukert model of battery discharge that im-
proves on older, less accurate state-of-charge prediction techniques by
incorporating temperature, chemistry-specific parameters, and a re-
definition of absolute capacity. This research successfully applied the
enhanced model to LCO, NCA, NMC, LMN, and LFP chemistries and
validated the applicability for most current EV battery chemistries. The
behavior of the model curves for many of the species follows patterns
consistent with the current literature. The exothermic and thermally
unstable LCO species resulted in a high temperature parameter, β,
which makes sense for a thermally sensitive reaction. Contrarily, the
moderately scaled β term found for the NCA indicate the known sta-
bility of these types and in proven longevity. Similarly, the low para-
meters that were obtained that are associated with elevated current,
namely α, were indicative of the low capacity offset common in the LFP
varieties. The layered varieties represented by NMC and LMN show the
most variation as they have the most stoichiometric varieties and ki-
netic phases, but tend to fall in the middle regarding stability and offset.
This variation is due to different manufacturers' chemistry, but once the

Fig. 7. Testing of LMN battery providing experimental (a) voltage and (b) temperature versus amp-hour rating along with model results as a function of depth of
discharge for (c) all runs and (d) select data points. Note: the legend indicates the date (e.g., month-day-year) and C-Rating of each test.
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parameters for a particular species are known, they may be used as a
basis for modeling. The research outlined here also shows the inherent
difficulty in modeling chemical reactions with so many interdependent
variables. While some of the data were disregarded due to obvious day-
to-day experimental issues, many tests were performed and the overall
ability of the improved model to capture the known behaviors of the
common EV batteries types proves its utility in future efforts.

The results show that engineers can choose an appropriate chem-
istry based on desired complexity and performance by comparing
model parameters. Manufacturer-supplied information, such as voltage
ranges, nominal capacities, and maximum loads are useful, but the
information gleaned from the improved model provides more insight
and leads to a better design. A short-term achievement of this work will
be to develop a “fuel gauge” for a vehicle using one of the exact che-
mistries tested. Using parameters obtained through the model, Cr

0, α, β,
and γ, a BMS can be merely programmed to obtain a better under-
standing of remaining energy stored while the vehicle is driven. When
more types of cells are tested using the same techniques, a resource can
be developed for all future battery pack designs to utilize. This is an
underlying strength of the current field of research as many chemistries
are being studied by an even larger number of researchers. Insights into
the underlying chemistry and new ideas concerning modeling are
abundant, which will lead to safe and more controllable battery packs.
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