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ABSTRACT 
Light Imaging Detection and Ranging (LIDAR) cameras 

and Light Detecting and Ranging (LiDAR) rangefinders were 
initially implemented in the 1960s as a higher-resolution and 
increased capability alternative to radar. Since then, LIDAR and 
LiDAR (hereto called lidar) have expanded into applications in 
aerial geographical surveying and collision-detection systems 
for autonomous vehicles. Current commercial systems are 
relatively expensive and potentially oversized for non-
commercial applications. Consequently, this deters their use on 
consumer products like bicycles, where lidar systems can enable 
safety advancements that are necessary to counter the rising 
numbers of hazards affecting riders. In addition, widespread 
usage of inexpensive lidar systems can facilitate a more complete 
picture of our transportation infrastructure by delivering 
information (e.g., pavement quality) suited for U.S. Department 
of Transportation Highway Performance Monitoring System 
(HPMS) reports. This will aid in the creation of a safer 
infrastructure by highlighting critical areas in need of 
improvement and repair. 

As a result, this effort outlines the development of a compact 
and cost-effective lidar system. The constructed system includes 
the ability to generate a static image by collecting several 
hundred thousand distance signals measured by a lidar 
rangefinder. Since the rangefinder has no self-contained rotation 
or translation systems, an Arduino Mega 2560 v3 
microcontroller operates a pair of stepper motors that adjusts its 
azimuthal angle and pitch. Coalescing these signals into an 
ASCII text file for viewing in MATLAB results in a reasonably 
accurate picture of the surroundings. While the current system 
takes 1-2 hours to complete a full sweep, it has the potential to 
provide sufficient accuracy for HPMS reports at a moderate 
expenditure: the entire system costs less than $300. Finally, 
upgrading to a more powerful microprocessor, implementing slip 
rings for enhanced electrical connectivity, and refining the code 
by including interpolation between points will enable faster point 
cloud generation while still maintaining an inexpensive device. 
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NOMENCLATURE 

ASCII American Standard Code for Information 
Interchange 

HPMS Highway Performance Monitoring System 
lidar Light Detection and Ranging 
LIDAR Light Imaging Detection and Ranging 
MATLAB Matrix Laboratory 
3-D Three-Dimensional 

 
1. INTRODUCTION 

Methods of transportation can vary for individuals depending 
on weather, destination, purpose, or other factors. Some might 
use public transit, personal vehicles, bicycles, or walking as their 
preferred mode of transportation. Unfortunately, this wide 
variance of options with disparate speeds results in a complex 
environment with vehicular collisions accounting for a quarter 
(24.9%) of all accidental deaths in the United States in 2016 [1]. 
Understandably, safety is a major concern for most commuters 
and while the number of accidents has decreased in the past, 
there has been a recent rise since 2014 [2].  

A primary safety concern is the existence of blind spots. 
Typically, rear and side-view mirrors help drivers monitor the 
area behind them. While additional mirrors are suggested to 
completely eliminate blind spots, watching multiple mirrors will 
slow drivers’ reaction time [3]. Therefore, it is preferable to 
monitor the area surrounding the vehicle or bicycle via another 
system. A detection system to alert drivers, visually and/or 
audibly, would help improve reaction time while potentially 
providing more consistent benefit than mirrors alone. A 
secondary safety issue includes the condition of the road. 
Inadequate road infrastructure is listed as a frequent cause of 
single-vehicular mishaps, especially rollover accidents [4, 5]. 
With the United States infrastructure currently in poor condition 



  2     Copyright © 2019 by ASME 

[6], having a detection system monitor road conditions in 
addition to blind spots would result in a significant opportunity 
to improve safety. 

Lidar is one remote sensing method that can facilitate an 
effective monitoring of both safety concerns. Briefly, lidar works 
similar to radar systems by using near visible light waves instead 
of radio waves and can map the surrounding environment in 
three-dimensions (3-D) [7]. Current applications for drone-
mounted aerial lidar systems include forest mapping to track 
growth, modeling forest fire behavior, classifying land and 
environmental types, and charting various other environments 
for a variety of purposes [8-11]. Additionally, ground-based 
mobile lidar systems can recognize various road types and 
identify defects in their respective surfaces while monitoring the 
environment surrounding roads for potential dangers [12]. In 
areas where valleys and other steep slopes are adjacent to roads, 
rail lines, and canals, landslides are detrimental to transportation 
and infrastructure. Here, lidar systems can be used to inspect 
surface material and identify changes and patterns that might 
lead to landslides [13]. 

While these applications illustrate lidar’s propensity to 
provide accurate and detailed representations, it is often costly to 
collect these data while respectively difficult to analyze the point 
cloud files that result from the collocation of this information [8]. 
Commercial lidar systems are highly capable; however, their 
individual cost ($6k to $100k [14]) might be excessive for 
numerous vehicle-mounted systems. For instance, a vehicular 
system does not have to scan wide areas of land at a time, only 
the immediate vicinity if there is a targeted goal in mind (e.g., 
road conditions versus automated driving). Hence, designing an 
inexpensive and small lidar system to identify vehicle, 
pedestrian, and bicycle proximity along with road defects could 
significantly benefit transportation safety while providing for 
widespread implementation. 

As a result, this effort describes the design of a more 
accessible and inexpensive lidar system while briefly discussing 
the potential impact it can have for transportation safety. First, 
two configurations of the hardware employed are presented 
highlighting a change from servomotors to stepper motors to 
enhance accuracy. Next, a straightforward methodology in data 
collection is indicated to generate the point cloud information via 
text files. Finally, the implementation of both configurations is 
presented stressing the lessons learned while culminating in the 
development of an instrument that should cost less than $300 and 
be capable of producing relatively accurate 3-D point clouds.  

2. HARDWARE AND SOFTWARE 
Since lidar uses infrared light, its wavelength (e.g., 905 nm) 

is reduced significantly in comparison to comparable radar 
systems (e.g., 50 cm). This provides it the capability to generate 
a high-resolution  image (aka high point density point cloud). 
Lidar rangefinders determine the distance of objects by emitting 
short pulses of light and recording the time it takes for this light 
to return to the detector. Object distance is determined by 
multiplying the speed of light by half the time it took the laser 
pulse to return. Subsequently, combining this distance with 

known horizontal and vertical angles of the rangefinder 
determines the x, y, and z positions of individual points. A point 
cloud is generated from this 3-D map using an appropriate 
software program. 

The fabrication of a complete lidar system includes 
integrating a lidar rangefinder with some mechanism of 
sweeping this component in three-dimensions. Furthermore, a 
microprocessor is required to process and store these data. 
Previous experience in creating this lidar system for the back of 
an electric bicycle demonstrated limited success and generated 
only two-dimensional information [15]. Building on this prior 
knowledge, this effort expanded the system’s capabilities into 3-
D via two successive hardware configurations. In both 
configurations, the Garmin LIDAR-Lite v3 module is employed 
since it has a greater range and accuracy (40 m ± 10 cm) than 
other inexpensive alternatives: e.g., Taidacent TOF 10120 (1.8 m 
± 5%) and the Benewake TF Mini (12 m ± 6 cm). The LIDAR-
Lite v3 also provides several different configuration settings that 
can be explored to enhance resolution accuracy. 
 
2.1 Configuration I: Servo Motors 
 Learning from the preceding effort, an Arduino Mega 2560 
Rev3 (16 MHz: henceforth Mega) was used as the 
microprocessor instead of an Adafruit Feather System or a 
Raspberry Pi 3B+. The open-source Arduino Integrated 
Development Environment and modified C++ programming 
language is well documented and respectively easy to learn for 
undergraduate students (the primary authors of this paper). 
Furthermore, Garmin officially supports the LIDAR-Lite v3 
rangefinder on the Arduino platform and a library is supplied on 
Github [16]. In contrast, while the Adafruit system worked 
previously, it did not provide sufficient processing speed and 
tended to be unreliable. Moreover, while the greater processing 
speed of the Raspberry Pi 3B+ (1.4 GHz, 64-bit quad-core) is 
advantageous for mobile systems, the primary issue of the 
aforementioned efforts suggested the focus be on point cloud 
accuracy over computational speed. This goal, when combined 
with a greater difficulty in learning the native Raspbian operating 
system and Python programming language (along with the 
LIDAR-Lite v3 not being officially supported on the Raspberry 
Pi platform), further solidified the choice of the Mega.  
 

 
FIGURE 1. CONFIGURATION I ILLUSTRATING THE 

LIDAR-LITE V3 RANGEFINDER AND THE TWO 
TOWERPRO SERVOS ON A BENT ALUMINUM BASE. 
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In the first configuration shown in  Figure 1, two TowerPro 
MG996R digital metal gear servomotors were employed to 
rotate in the x-y and y-z directions, respectively. A laptop 
computer supplied power for the entire system and a capacitor 
was used to protect the rangefinder from voltage spikes or 
current bursts. In Figure 2, the rangefinder and Mega 
communicated over the Inter-Integrated Circuit protocol using 
Serial Data Line and Serial Clock Line Mega pins, colored blue 
and green in the figure, respectively. Furthermore, signals to the 
servos were sent using the Mega’s Pulse Width Modulation pins.  
 

 
FIGURE 2. WIRING DIAGRAM FOR CONFIGURATION I 
WITH THE MEGA SUPPLYING ENERGY TO BOTH THE 

LIDAR RANGEFINDER AND THE SERVOS.  

  
FIGURE 3. (LEFT) ISOMETRIC FRONT VIEW OF 

SOLIDWORKS COMPUTER AIDED DRAFTING MODEL OF 
THE SECOND CONFIGURATION HOUSING AND (RIGHT) 

ISOMETRIC FRONT VIEW OF PRINTED SECOND 
CONFIGURATION ASSEMBLY WITH STEPPER MOTORS, 

MOTOR CONTROLLER, AND RANGEFINDER ATTACHED. 

Programming of the servomotors included adding a servo 
library to the Arduino code [17]. Using the angles of the motors 
retrieved from this library during operation, trigonometry was 
employed to calculate the x, y, and z-coordinates of each distance 
measured from the rangefinder. Unfortunately, the servos chosen 
could only rotate 180º in 1º increments. As a result, this 
configuration was unable to create a spherical point-cloud and 
had a relatively large degree per step value. 

2.2 Configuration II: Stepper Motors 
 Similar to Configuration I, the Mega was used as the 
microprocessor for Configuration II. Now, two Kiatronics 
28BYJ-48 5 VDC stepper motors, controlled by a Kiatronics 
ULN2003 motor controller, were employed to move the 
rangefinder. Each stepper motor had a gear reduction of 1/64 
allowing for a rotation of 0.08º per step, facilitating a significant 
improvement in point cloud resolution (shown later in Section 
3).  
 

 

FIGURE 4. WIRING DIAGRAM FOR CONFIGURATION II 
ILLUSTRATING AN ADVANCED COMPLEXITY OVER 

CONFIGURATION I (FIGURE 2) DUE TO THE ADDITION OF 
TWO STEPPER MOTORS. 

During testing of Configuration I, the bent aluminum 
structure (Figure 1) flexed during operation resulting in the 
rangefinder not rotating around a fixed point in space. Moreover, 
the motor shafts did not line up to the fixture point of the 
rangefinder resulting in data that did not have a common origin. 
Instead, the second configuration included a 3-D printed 
housing, as illustrated in Figure 3, which provided a solid base, 
minimized vibration during usage, and created a common origin. 
This housing was printed from acrylonitrile butadiene styrene 
using two Stratasys Mojo fused deposition modeling printers and 
took 9.1 hours to complete while utilizing 5.7 in3 of material. 

Like the first configuration in Figure 2, wiring of the second 
version in Figure 4 involved power being supplied by a laptop 
computer and a capacitor was implemented to protect the 
rangefinder. Now, the Mega communicated with two motor 
controllers connected to the stepper motors that operate using 
four electromagnets. These motors can be rotated at half steps 
between the magnets enabling an advanced resolution.  
Unfortunately, the available Arduino stepper motor library did 
not properly communicate with these motor controllers [18]. 
Therefore, code was written to directly change the voltages of 
the electromagnets inside these motors, one magnet at a time.   
 
 

LIDAR-Lite v3 Rangefinder 
5 VDC Nominal Draw (3.5 VDC Idle) 
135 mA Idle, 105 mA Continuous 

680 µF Electrolytic 
Capacitor 

28BYJ48 – 12 Stepper Motors 
4 Full-Step Phases 
5 VDC Draw per Phase 
300 Ω Resistance per Phase 

Unless directly connected to motors, 
red wires are +5 VDC and black wires 
are ground 
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2.3 Point Cloud Software 
 The data coming from a rangefinder includes the raw 
distance; hence, the most straightforward format for generating 
point clouds is through the American Standard Code for 
Information Interchange (ASCII) .xyz file type that features 
three columns of x, y, and z-coordinates for the thousands of 
points in a point cloud. Most commercial software packages that 
generate point clouds are setup to read the industrial standard .las 
and .laz lidar data. While initially the Trimble Realworks Viewer 
11.0 was used because it can plot both .xyz and .las formats 
enabling a transition between the generated raw distance data 
into the industry format, it was decided to employ MATLAB as 
an alternative point cloud processing tool. 
 The LIDAR-Lite v3 rangefinder utilized is not capable of 
detecting color and is not officially supported to provide signal 
strength data. Whereas, .las and .laz file types allow for 
incorporation of color and signal strength. Furthermore, the 
students involved in this effort are familiar with MATLAB 
programming through their undergraduate curriculum. As a 
result, MATLAB code was generated that can parse data arrays 
from the Arduino system and concatenate this information into 
x, y, and z-coordinates. When reviewing these data in the 
following section, it was found that some datasets had points that 
were not near the subject of interest; i.e., random outliers. Code 
was added to filter this outlying data to ensure presentation of 
only the area of interest. These data are then plotted using the 3-
D scatter plot option in MATLAB with color used as the legend 
to determine the distance away from the rangefinder. Except for 
one instance, ASCII .xyz text files were used to generate the 
point cloud images in the next section. 

 
3. RESULTS AND DISCUSSION 

The first point cloud generated using Configuration I and 
plotted using the Trimble Realworks Viewer is illustrated in 
Figure 5. Overall, these data took four minutes to capture and the 
servomotors were programmed to rotate 30º horizontally and 45º 
vertically. While the edge of the monitor on the right is somewhat 
visible in the point cloud at a slightly different angle, the overall 
point cloud resolution is poor. It is possible that the monitor 
screen material interfered with the rangefinder’s laser pulses by 
absorbing or reflecting them away from the rangefinder; hence, 
it shows up as an empty screen area. In addition, while the 
monitor on the left is partially visible in the point cloud, the 
window behind the monitors prevented any further details from 
appearing as the laser pulses went through into the next room and 
did not return to the rangefinder.  

At this point, a second set of data were taken using 
Configuration I to see if any improvements could be made to the 
setup or the underlying Arduino code. This time MATLAB was 
used to generate the point cloud with the corresponding picture 
and point cloud shown in Figure 6. It took eight minutes to 
generate these data and during this process, the aluminum mount 
was seen to wiggle after each horizontal sweep was completed, 
resulting in the double image seen in this point cloud. The point 
cloud still has a respectively poor resolution and the system loses 
accuracy as the distance from the rangefinder increases; i.e., the 

points get further apart the farther they are away from the 
rangefinder. 

 

  
FIGURE 5. (LEFT) FIRST POINT CLOUD GENERATED 

USING CONFIGURATION I AND (RIGHT) THE 
CORRESPONDING PICTURE LOCATION. 

 
 

 
FIGURE 6. (TOP) PHOTO OF CONTROL ROOM FOR 
ENGINE TEST CELL ON CAMPUS AND (BOTTOM) 

CORRESPONDING TOP VIEW OF THE POINT CLOUD 
GENERATED OF THIS ROOM IN MATLAB. 

 
FIGURE 7. FRONT VIEW OF POINT CLOUD USING 
CONFIGURATION II WITH THE SERVER BOX AND 

WINDOW (SEE FIGURE 6) NOW DISTINGUISHABLE. 

box 
window 

pipe 

light 
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FIGURE 8. (TOP) FRONT VIEW REFERENCE PHOTO FOR 
AN AUDITORIUM CLASSROOM ON CAMPUS WITH ONE 
CHAIR PLACED ON TOP OF THE DESK AND (BOTTOM) 

POINT CLOUD GENERATED USING CONFIGURATION II. 

It was at this point that Configuration II was constructed to 
increase the number of data points taken to around 15,000-
20,000 up from about 3,000 data points in Configuration I. This 
upgraded system took ten minutes to collect the same picture 
location as Figure 6. Figure 7 illustrates that the service box on 
the wall to the right of the window is now more clearly seen 
jutting out of the wall along with the window itself becoming 
distinguishable. The walls are now discernable and a large 
cylindrical pipe near the ceiling is present. The respectively 
bright rectangular light can be (somewhat) seen lower in the 
image and closer to the rangefinder. Of importance, the filtering 
routine implemented in MATLAB removed data behind the 
window because it skewed the overall point cloud picture. In the 
point cloud figures moving forward, the legend color indicates 
the distance in [cm] from the rangefinder in all three-directions.  

However, when attempting to capture a classroom on campus 
with numerous objects (Figure 8), respectively few 
distinguishing characteristics are seen. Except for the overall 
shape of the auditorium and the ceiling, there are not many 
recognizable features. Upon reviewing the Arduino code, it was 
found that there was a mistake in the electromagnet voltage 
specifications that limited the horizontal resolution of the point 
clouds. Many unique step numbers were counted as the same 
step that caused the resulting point clouds to have multiple points 
in one location. Furthermore, this version of the code 
incremented the vertical motors as a full rotation around the 
magnets. This caused a relatively large jump in the angle 
upwards when it could have been respectively smaller. Both 
Figure 7 and Figure 8 illustrate these issues with numerous points 
in the horizontal direction missing along with a reduced accuracy 
(i.e., jumps) in the vertical direction.  

 

 
FIGURE 9. POINT CLOUD (TOP) WITH AXES AND 

(BOTTOM) WITHOUT AXES OF THE AUDITORIUM 
CLASSROOM IN FIGURE 8 AFTER IMPLEMENTING CODE 

UPGRADES TO CONFIGURATION II. 

 A subsequent upgrade to the code fixed the horizontal bug 
that augmented the resolution in this direction by seven times. 
Moreover, additional code was written to loop half steps between 
each electromagnet of the vertical motor. Rather than a full 
rotation around all four magnets, the motor rotated once between 
magnets one and two. After another horizontal sweep, the 
vertical motor then moved to magnet two. After another 
horizontal sweep, the motor moved between magnets two and 
three, and so on. This amplified the vertical resolution by seven 
times; hence, bringing the total resolution growth to forty-nine 
times the previous code.  Unfortunately, this increased resol-
ution created a data collection issue. After 300,000 data points 
are collected, the serial monitor within the Mega began deleting 
distance measurements collected from the beginning of a test. 
Currently, a third-party serial monitoring program (CoolTerm 
[19]) is installed in the laptop that uses the same communication 
port connected to the Arduino and writes these data directly to a 
text file. Ideally, direct communication between Arduino and 
MATLAB would allow MATLAB to read these serial monitor 
data and plot the point cloud in real time while fixing the data 
deletion issue.  
 Figure 9 presents the updated Configuration II point cloud 
for the same location as Figure 8. This data set took 130 minutes 
to create, contained over 700,000 points, and generated a text file 
with a size of 8 MB. Nearly all seats are clearly visible, 
especially those close to the front. Moreover, the chair placed on 
top of the desk in the middle of the classroom is seen clearly. On 
the left side of the auditorium and to the right of the left walkway, 
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one outlet on every desk starting from the front and ending 
towards the back was lifted. While difficult to see in this figure, 
after expanding the image to a larger size, these outlets are shown 
as small bumps in the point cloud. 
 

 

 
FIGURE 10. (TOP) REFERENCE IMAGE FOR THE MULTI-

CYLINDER ENGINE TEST CELL ON CAMPUS AND 
(BOTTOM) THE CORRESPONDING POINT CLOUD.  

 

 
FIGURE 11. (TOP) REFERENCE IMAGE OF THE FORMULA 
SAE CAR AND (BOTTOM) THE RELATED POINT CLOUD. 

This success led to another point cloud being taken of a 
multi-cylinder engine test cell on campus in Figure 10. This 
dataset took 85 minutes to create and data beyond a certain range 
were removed to better utilize color grading within MATLAB 
for the subjects of interest. After deletion, there remains about 
200,000 points with the dynamometer on right hand side of the 
engine clearly seen. In addition, the curved pipe starting at the 
floor and ending at the engine is noticeable. It is important to 
note that only the default settings on the rangefinder were used; 
hence, configuring it to its short-range option might increase the 
detail in scenarios, such as Figure 10, where the objects are 
closer to the rangefinder. 

To highlight how data post-processing can improve point 
cloud detection of the subject of interest, Figure 11 presents a 
picture and point cloud of a Formula SAE car. By strategically 
removing data points beyond a certain distance, the picture of the 
vehicle becomes rather recognizable. This demonstrates that 
successful lidar usage requires the fabrication of a capable 
hardware system coupled to efficient software routines.  
 Overall, this effort illustrates that higher resolution point 
clouds take significantly longer to create. Placing a system with 
this level of detail onto mobile platforms (e.g., electric bikes) 
where immediate knowledge of threats is needed appears 
unfeasible. Instead, like the previous effort, use of a rangefinder 
in conjunction with a camera can sweep an area significantly 
faster; hence, detecting vehicles more quickly along with the 
distance of that vehicle to alert riders of potential danger. Other 
possibilities include integrating this rangefinder with more 
extensive software algorithms that can track objects of interest 
[20]. However, this system appears suitable for delivering 
information for HPMS reports including, but not limited to: 
traffic information to mitigate roadway delays, accident/crash 
investigation, soil and rock slope stability, flood risk mapping, 
pavement quality monitoring, and clearance data for highway 
overpasses and power lines [21]. Since the total system cost is 
less than $300 (not considering the 3-D printed mount estimated 
at less than $30), it is possible to facilitate widespread 
implementation of lidar across the entire transportation 
infrastructure to enhance the information gathered. Finally, 
moving to a Raspberry Pi 3B+ microprocessor and implementing 
slip rings in the setup can help create a stand-alone system that 
is robust, fast, and, in combination with code upgrades that 
include interpolation between points, can generate high quality 
point clouds at a minimum expenditure.  
 
4. CONCLUSIONS 
 The extensive application of lidar systems throughout the 
transportation infrastructure can facilitate a safer environment 
for travelers. These systems can enable the public to be aware of 
imminent threats while helping highlight critical areas in need of 
improvement and repair. However, current commercial lidar 
systems are relatively expensive, subsequently reducing their 
potential widespread feasibility. This effort endeavored to 
minimize expenditures when attempting to generate a lidar 
system of similar accuracy to commercial options. This was 
accomplished by utilizing a Garmin LIDAR-Lite v3 as the 

engine 

dynamometer 

pipe 
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rangefinder and an Arduino Mega 2560 v3 microcontroller in 
combination with two stepper motors. Overall, it was possible to 
generate relatively accurate point clouds in MATLAB from 
ASCII text files with upwards of 700,000 data points. With a cost 
less than $300 (not including a 3-D printed mounting), this 
increases the possibility of wide-ranging implementation. 
Currently, this system is not suitable for mobile applications as 
data collection time took around 1-2 hours. Nevertheless, the 
system appears suitable for delivering information for public 
transport reports. Finally, potential upgrades to the system (e.g., 
microprocessor and slip rings) can further improve speed, 
robustness, and accuracy while not significantly growing its cost. 
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