
 1 Copyright © 2019 by ASME

Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition
IMECE2019

November 11-14, 2019, Salt Lake City, UT, USA

IMECE2019-11279

DESIGN AND DEVELOPMENT OF A COST-EFFECTIVE LIDAR SYSTEM

FOR TRANSPORTATION

Theodore Wiklund, Mark Heim, Jaret Halberstadt, Michael Duncan, Deven Mittman, Thomas DeAgostino, and
Christopher Depcik1
University of Kansas

Lawrence, Kansas, US

ABSTRACT
Light Imaging Detection and Ranging (LIDAR) cameras

and Light Detecting and Ranging (LiDAR) rangefinders were
initially implemented in the 1960s as a higher-resolution and
increased capability alternative to radar. Since then, LIDAR and
LiDAR (hereto called lidar) have expanded into applications in
aerial geographical surveying and collision-detection systems
for autonomous vehicles. Current commercial systems are
relatively expensive and potentially oversized for non-
commercial applications. Consequently, this deters their use on
consumer products like bicycles, where lidar systems can enable
safety advancements that are necessary to counter the rising
numbers of hazards affecting riders. In addition, widespread
usage of inexpensive lidar systems can facilitate a more complete
picture of our transportation infrastructure by delivering
information (e.g., pavement quality) suited for U.S. Department
of Transportation Highway Performance Monitoring System
(HPMS) reports. This will aid in the creation of a safer
infrastructure by highlighting critical areas in need of
improvement and repair.

As a result, this effort outlines the development of a compact
and cost-effective lidar system. The constructed system includes
the ability to generate a static image by collecting several
hundred thousand distance signals measured by a lidar
rangefinder. Since the rangefinder has no self-contained rotation
or translation systems, an Arduino Mega 2560 v3
microcontroller operates a pair of stepper motors that adjusts its
azimuthal angle and pitch. Coalescing these signals into an
ASCII text file for viewing in MATLAB results in a reasonably
accurate picture of the surroundings. While the current system
takes 1-2 hours to complete a full sweep, it has the potential to
provide sufficient accuracy for HPMS reports at a moderate
expenditure: the entire system costs less than $300. Finally,
upgrading to a more powerful microprocessor, implementing slip
rings for enhanced electrical connectivity, and refining the code
by including interpolation between points will enable faster point
cloud generation while still maintaining an inexpensive device.

1 Contact author: depcik@ku.edu

KEYWORDS: lidar, rangefinder, point cloud, transportation,
three-dimensional mapping, inexpensive

NOMENCLATURE

ASCII American Standard Code for Information
Interchange

HPMS Highway Performance Monitoring System
lidar Light Detection and Ranging
LIDAR Light Imaging Detection and Ranging
MATLAB Matrix Laboratory
3-D Three-Dimensional

1. INTRODUCTION

Methods of transportation can vary for individuals depending
on weather, destination, purpose, or other factors. Some might
use public transit, personal vehicles, bicycles, or walking as their
preferred mode of transportation. Unfortunately, this wide
variance of options with disparate speeds results in a complex
environment with vehicular collisions accounting for a quarter
(24.9%) of all accidental deaths in the United States in 2016 [1].
Understandably, safety is a major concern for most commuters
and while the number of accidents has decreased in the past,
there has been a recent rise since 2014 [2].

A primary safety concern is the existence of blind spots.
Typically, rear and side-view mirrors help drivers monitor the
area behind them. While additional mirrors are suggested to
completely eliminate blind spots, watching multiple mirrors will
slow drivers’ reaction time [3]. Therefore, it is preferable to
monitor the area surrounding the vehicle or bicycle via another
system. A detection system to alert drivers, visually and/or
audibly, would help improve reaction time while potentially
providing more consistent benefit than mirrors alone. A
secondary safety issue includes the condition of the road.
Inadequate road infrastructure is listed as a frequent cause of
single-vehicular mishaps, especially rollover accidents [4, 5].
With the United States infrastructure currently in poor condition

 2 Copyright © 2019 by ASME

[6], having a detection system monitor road conditions in
addition to blind spots would result in a significant opportunity
to improve safety.

Lidar is one remote sensing method that can facilitate an
effective monitoring of both safety concerns. Briefly, lidar works
similar to radar systems by using near visible light waves instead
of radio waves and can map the surrounding environment in
three-dimensions (3-D) [7]. Current applications for drone-
mounted aerial lidar systems include forest mapping to track
growth, modeling forest fire behavior, classifying land and
environmental types, and charting various other environments
for a variety of purposes [8-11]. Additionally, ground-based
mobile lidar systems can recognize various road types and
identify defects in their respective surfaces while monitoring the
environment surrounding roads for potential dangers [12]. In
areas where valleys and other steep slopes are adjacent to roads,
rail lines, and canals, landslides are detrimental to transportation
and infrastructure. Here, lidar systems can be used to inspect
surface material and identify changes and patterns that might
lead to landslides [13].

While these applications illustrate lidar’s propensity to
provide accurate and detailed representations, it is often costly to
collect these data while respectively difficult to analyze the point
cloud files that result from the collocation of this information [8].
Commercial lidar systems are highly capable; however, their
individual cost ($6k to $100k [14]) might be excessive for
numerous vehicle-mounted systems. For instance, a vehicular
system does not have to scan wide areas of land at a time, only
the immediate vicinity if there is a targeted goal in mind (e.g.,
road conditions versus automated driving). Hence, designing an
inexpensive and small lidar system to identify vehicle,
pedestrian, and bicycle proximity along with road defects could
significantly benefit transportation safety while providing for
widespread implementation.

As a result, this effort describes the design of a more
accessible and inexpensive lidar system while briefly discussing
the potential impact it can have for transportation safety. First,
two configurations of the hardware employed are presented
highlighting a change from servomotors to stepper motors to
enhance accuracy. Next, a straightforward methodology in data
collection is indicated to generate the point cloud information via
text files. Finally, the implementation of both configurations is
presented stressing the lessons learned while culminating in the
development of an instrument that should cost less than $300 and
be capable of producing relatively accurate 3-D point clouds.

2. HARDWARE AND SOFTWARE
Since lidar uses infrared light, its wavelength (e.g., 905 nm)

is reduced significantly in comparison to comparable radar
systems (e.g., 50 cm). This provides it the capability to generate
a high-resolution image (aka high point density point cloud).
Lidar rangefinders determine the distance of objects by emitting
short pulses of light and recording the time it takes for this light
to return to the detector. Object distance is determined by
multiplying the speed of light by half the time it took the laser
pulse to return. Subsequently, combining this distance with

known horizontal and vertical angles of the rangefinder
determines the x, y, and z positions of individual points. A point
cloud is generated from this 3-D map using an appropriate
software program.

The fabrication of a complete lidar system includes
integrating a lidar rangefinder with some mechanism of
sweeping this component in three-dimensions. Furthermore, a
microprocessor is required to process and store these data.
Previous experience in creating this lidar system for the back of
an electric bicycle demonstrated limited success and generated
only two-dimensional information [15]. Building on this prior
knowledge, this effort expanded the system’s capabilities into 3-
D via two successive hardware configurations. In both
configurations, the Garmin LIDAR-Lite v3 module is employed
since it has a greater range and accuracy (40 m ± 10 cm) than
other inexpensive alternatives: e.g., Taidacent TOF 10120 (1.8 m
± 5%) and the Benewake TF Mini (12 m ± 6 cm). The LIDAR-
Lite v3 also provides several different configuration settings that
can be explored to enhance resolution accuracy.

2.1 Configuration I: Servo Motors
 Learning from the preceding effort, an Arduino Mega 2560
Rev3 (16 MHz: henceforth Mega) was used as the
microprocessor instead of an Adafruit Feather System or a
Raspberry Pi 3B+. The open-source Arduino Integrated
Development Environment and modified C++ programming
language is well documented and respectively easy to learn for
undergraduate students (the primary authors of this paper).
Furthermore, Garmin officially supports the LIDAR-Lite v3
rangefinder on the Arduino platform and a library is supplied on
Github [16]. In contrast, while the Adafruit system worked
previously, it did not provide sufficient processing speed and
tended to be unreliable. Moreover, while the greater processing
speed of the Raspberry Pi 3B+ (1.4 GHz, 64-bit quad-core) is
advantageous for mobile systems, the primary issue of the
aforementioned efforts suggested the focus be on point cloud
accuracy over computational speed. This goal, when combined
with a greater difficulty in learning the native Raspbian operating
system and Python programming language (along with the
LIDAR-Lite v3 not being officially supported on the Raspberry
Pi platform), further solidified the choice of the Mega.

FIGURE 1. CONFIGURATION I ILLUSTRATING THE

LIDAR-LITE V3 RANGEFINDER AND THE TWO
TOWERPRO SERVOS ON A BENT ALUMINUM BASE.

 3 Copyright © 2019 by ASME

In the first configuration shown in Figure 1, two TowerPro
MG996R digital metal gear servomotors were employed to
rotate in the x-y and y-z directions, respectively. A laptop
computer supplied power for the entire system and a capacitor
was used to protect the rangefinder from voltage spikes or
current bursts. In Figure 2, the rangefinder and Mega
communicated over the Inter-Integrated Circuit protocol using
Serial Data Line and Serial Clock Line Mega pins, colored blue
and green in the figure, respectively. Furthermore, signals to the
servos were sent using the Mega’s Pulse Width Modulation pins.

FIGURE 2. WIRING DIAGRAM FOR CONFIGURATION I
WITH THE MEGA SUPPLYING ENERGY TO BOTH THE

LIDAR RANGEFINDER AND THE SERVOS.

FIGURE 3. (LEFT) ISOMETRIC FRONT VIEW OF

SOLIDWORKS COMPUTER AIDED DRAFTING MODEL OF
THE SECOND CONFIGURATION HOUSING AND (RIGHT)

ISOMETRIC FRONT VIEW OF PRINTED SECOND
CONFIGURATION ASSEMBLY WITH STEPPER MOTORS,

MOTOR CONTROLLER, AND RANGEFINDER ATTACHED.

Programming of the servomotors included adding a servo
library to the Arduino code [17]. Using the angles of the motors
retrieved from this library during operation, trigonometry was
employed to calculate the x, y, and z-coordinates of each distance
measured from the rangefinder. Unfortunately, the servos chosen
could only rotate 180º in 1º increments. As a result, this
configuration was unable to create a spherical point-cloud and
had a relatively large degree per step value.

2.2 Configuration II: Stepper Motors
 Similar to Configuration I, the Mega was used as the
microprocessor for Configuration II. Now, two Kiatronics
28BYJ-48 5 VDC stepper motors, controlled by a Kiatronics
ULN2003 motor controller, were employed to move the
rangefinder. Each stepper motor had a gear reduction of 1/64
allowing for a rotation of 0.08º per step, facilitating a significant
improvement in point cloud resolution (shown later in Section
3).

FIGURE 4. WIRING DIAGRAM FOR CONFIGURATION II
ILLUSTRATING AN ADVANCED COMPLEXITY OVER

CONFIGURATION I (FIGURE 2) DUE TO THE ADDITION OF
TWO STEPPER MOTORS.

During testing of Configuration I, the bent aluminum
structure (Figure 1) flexed during operation resulting in the
rangefinder not rotating around a fixed point in space. Moreover,
the motor shafts did not line up to the fixture point of the
rangefinder resulting in data that did not have a common origin.
Instead, the second configuration included a 3-D printed
housing, as illustrated in Figure 3, which provided a solid base,
minimized vibration during usage, and created a common origin.
This housing was printed from acrylonitrile butadiene styrene
using two Stratasys Mojo fused deposition modeling printers and
took 9.1 hours to complete while utilizing 5.7 in3 of material.

Like the first configuration in Figure 2, wiring of the second
version in Figure 4 involved power being supplied by a laptop
computer and a capacitor was implemented to protect the
rangefinder. Now, the Mega communicated with two motor
controllers connected to the stepper motors that operate using
four electromagnets. These motors can be rotated at half steps
between the magnets enabling an advanced resolution.
Unfortunately, the available Arduino stepper motor library did
not properly communicate with these motor controllers [18].
Therefore, code was written to directly change the voltages of
the electromagnets inside these motors, one magnet at a time.

LIDAR-Lite v3 Rangefinder
5 VDC Nominal Draw (3.5 VDC Idle)
135 mA Idle, 105 mA Continuous

680 µF Electrolytic
Capacitor

28BYJ48 – 12 Stepper Motors
4 Full-Step Phases
5 VDC Draw per Phase
300 Ω Resistance per Phase

Unless directly connected to motors,
red wires are +5 VDC and black wires
are ground

 4 Copyright © 2019 by ASME

2.3 Point Cloud Software
 The data coming from a rangefinder includes the raw
distance; hence, the most straightforward format for generating
point clouds is through the American Standard Code for
Information Interchange (ASCII) .xyz file type that features
three columns of x, y, and z-coordinates for the thousands of
points in a point cloud. Most commercial software packages that
generate point clouds are setup to read the industrial standard .las
and .laz lidar data. While initially the Trimble Realworks Viewer
11.0 was used because it can plot both .xyz and .las formats
enabling a transition between the generated raw distance data
into the industry format, it was decided to employ MATLAB as
an alternative point cloud processing tool.
 The LIDAR-Lite v3 rangefinder utilized is not capable of
detecting color and is not officially supported to provide signal
strength data. Whereas, .las and .laz file types allow for
incorporation of color and signal strength. Furthermore, the
students involved in this effort are familiar with MATLAB
programming through their undergraduate curriculum. As a
result, MATLAB code was generated that can parse data arrays
from the Arduino system and concatenate this information into
x, y, and z-coordinates. When reviewing these data in the
following section, it was found that some datasets had points that
were not near the subject of interest; i.e., random outliers. Code
was added to filter this outlying data to ensure presentation of
only the area of interest. These data are then plotted using the 3-
D scatter plot option in MATLAB with color used as the legend
to determine the distance away from the rangefinder. Except for
one instance, ASCII .xyz text files were used to generate the
point cloud images in the next section.

3. RESULTS AND DISCUSSION

The first point cloud generated using Configuration I and
plotted using the Trimble Realworks Viewer is illustrated in
Figure 5. Overall, these data took four minutes to capture and the
servomotors were programmed to rotate 30º horizontally and 45º
vertically. While the edge of the monitor on the right is somewhat
visible in the point cloud at a slightly different angle, the overall
point cloud resolution is poor. It is possible that the monitor
screen material interfered with the rangefinder’s laser pulses by
absorbing or reflecting them away from the rangefinder; hence,
it shows up as an empty screen area. In addition, while the
monitor on the left is partially visible in the point cloud, the
window behind the monitors prevented any further details from
appearing as the laser pulses went through into the next room and
did not return to the rangefinder.

At this point, a second set of data were taken using
Configuration I to see if any improvements could be made to the
setup or the underlying Arduino code. This time MATLAB was
used to generate the point cloud with the corresponding picture
and point cloud shown in Figure 6. It took eight minutes to
generate these data and during this process, the aluminum mount
was seen to wiggle after each horizontal sweep was completed,
resulting in the double image seen in this point cloud. The point
cloud still has a respectively poor resolution and the system loses
accuracy as the distance from the rangefinder increases; i.e., the

points get further apart the farther they are away from the
rangefinder.

FIGURE 5. (LEFT) FIRST POINT CLOUD GENERATED

USING CONFIGURATION I AND (RIGHT) THE
CORRESPONDING PICTURE LOCATION.

FIGURE 6. (TOP) PHOTO OF CONTROL ROOM FOR
ENGINE TEST CELL ON CAMPUS AND (BOTTOM)

CORRESPONDING TOP VIEW OF THE POINT CLOUD
GENERATED OF THIS ROOM IN MATLAB.

FIGURE 7. FRONT VIEW OF POINT CLOUD USING
CONFIGURATION II WITH THE SERVER BOX AND

WINDOW (SEE FIGURE 6) NOW DISTINGUISHABLE.

box
window

pipe

light

 5 Copyright © 2019 by ASME

FIGURE 8. (TOP) FRONT VIEW REFERENCE PHOTO FOR
AN AUDITORIUM CLASSROOM ON CAMPUS WITH ONE
CHAIR PLACED ON TOP OF THE DESK AND (BOTTOM)

POINT CLOUD GENERATED USING CONFIGURATION II.

It was at this point that Configuration II was constructed to
increase the number of data points taken to around 15,000-
20,000 up from about 3,000 data points in Configuration I. This
upgraded system took ten minutes to collect the same picture
location as Figure 6. Figure 7 illustrates that the service box on
the wall to the right of the window is now more clearly seen
jutting out of the wall along with the window itself becoming
distinguishable. The walls are now discernable and a large
cylindrical pipe near the ceiling is present. The respectively
bright rectangular light can be (somewhat) seen lower in the
image and closer to the rangefinder. Of importance, the filtering
routine implemented in MATLAB removed data behind the
window because it skewed the overall point cloud picture. In the
point cloud figures moving forward, the legend color indicates
the distance in [cm] from the rangefinder in all three-directions.

However, when attempting to capture a classroom on campus
with numerous objects (Figure 8), respectively few
distinguishing characteristics are seen. Except for the overall
shape of the auditorium and the ceiling, there are not many
recognizable features. Upon reviewing the Arduino code, it was
found that there was a mistake in the electromagnet voltage
specifications that limited the horizontal resolution of the point
clouds. Many unique step numbers were counted as the same
step that caused the resulting point clouds to have multiple points
in one location. Furthermore, this version of the code
incremented the vertical motors as a full rotation around the
magnets. This caused a relatively large jump in the angle
upwards when it could have been respectively smaller. Both
Figure 7 and Figure 8 illustrate these issues with numerous points
in the horizontal direction missing along with a reduced accuracy
(i.e., jumps) in the vertical direction.

FIGURE 9. POINT CLOUD (TOP) WITH AXES AND

(BOTTOM) WITHOUT AXES OF THE AUDITORIUM
CLASSROOM IN FIGURE 8 AFTER IMPLEMENTING CODE

UPGRADES TO CONFIGURATION II.

 A subsequent upgrade to the code fixed the horizontal bug
that augmented the resolution in this direction by seven times.
Moreover, additional code was written to loop half steps between
each electromagnet of the vertical motor. Rather than a full
rotation around all four magnets, the motor rotated once between
magnets one and two. After another horizontal sweep, the
vertical motor then moved to magnet two. After another
horizontal sweep, the motor moved between magnets two and
three, and so on. This amplified the vertical resolution by seven
times; hence, bringing the total resolution growth to forty-nine
times the previous code. Unfortunately, this increased resol-
ution created a data collection issue. After 300,000 data points
are collected, the serial monitor within the Mega began deleting
distance measurements collected from the beginning of a test.
Currently, a third-party serial monitoring program (CoolTerm
[19]) is installed in the laptop that uses the same communication
port connected to the Arduino and writes these data directly to a
text file. Ideally, direct communication between Arduino and
MATLAB would allow MATLAB to read these serial monitor
data and plot the point cloud in real time while fixing the data
deletion issue.
 Figure 9 presents the updated Configuration II point cloud
for the same location as Figure 8. This data set took 130 minutes
to create, contained over 700,000 points, and generated a text file
with a size of 8 MB. Nearly all seats are clearly visible,
especially those close to the front. Moreover, the chair placed on
top of the desk in the middle of the classroom is seen clearly. On
the left side of the auditorium and to the right of the left walkway,

 6 Copyright © 2019 by ASME

one outlet on every desk starting from the front and ending
towards the back was lifted. While difficult to see in this figure,
after expanding the image to a larger size, these outlets are shown
as small bumps in the point cloud.

FIGURE 10. (TOP) REFERENCE IMAGE FOR THE MULTI-

CYLINDER ENGINE TEST CELL ON CAMPUS AND
(BOTTOM) THE CORRESPONDING POINT CLOUD.

FIGURE 11. (TOP) REFERENCE IMAGE OF THE FORMULA
SAE CAR AND (BOTTOM) THE RELATED POINT CLOUD.

This success led to another point cloud being taken of a
multi-cylinder engine test cell on campus in Figure 10. This
dataset took 85 minutes to create and data beyond a certain range
were removed to better utilize color grading within MATLAB
for the subjects of interest. After deletion, there remains about
200,000 points with the dynamometer on right hand side of the
engine clearly seen. In addition, the curved pipe starting at the
floor and ending at the engine is noticeable. It is important to
note that only the default settings on the rangefinder were used;
hence, configuring it to its short-range option might increase the
detail in scenarios, such as Figure 10, where the objects are
closer to the rangefinder.

To highlight how data post-processing can improve point
cloud detection of the subject of interest, Figure 11 presents a
picture and point cloud of a Formula SAE car. By strategically
removing data points beyond a certain distance, the picture of the
vehicle becomes rather recognizable. This demonstrates that
successful lidar usage requires the fabrication of a capable
hardware system coupled to efficient software routines.
 Overall, this effort illustrates that higher resolution point
clouds take significantly longer to create. Placing a system with
this level of detail onto mobile platforms (e.g., electric bikes)
where immediate knowledge of threats is needed appears
unfeasible. Instead, like the previous effort, use of a rangefinder
in conjunction with a camera can sweep an area significantly
faster; hence, detecting vehicles more quickly along with the
distance of that vehicle to alert riders of potential danger. Other
possibilities include integrating this rangefinder with more
extensive software algorithms that can track objects of interest
[20]. However, this system appears suitable for delivering
information for HPMS reports including, but not limited to:
traffic information to mitigate roadway delays, accident/crash
investigation, soil and rock slope stability, flood risk mapping,
pavement quality monitoring, and clearance data for highway
overpasses and power lines [21]. Since the total system cost is
less than $300 (not considering the 3-D printed mount estimated
at less than $30), it is possible to facilitate widespread
implementation of lidar across the entire transportation
infrastructure to enhance the information gathered. Finally,
moving to a Raspberry Pi 3B+ microprocessor and implementing
slip rings in the setup can help create a stand-alone system that
is robust, fast, and, in combination with code upgrades that
include interpolation between points, can generate high quality
point clouds at a minimum expenditure.

4. CONCLUSIONS
 The extensive application of lidar systems throughout the
transportation infrastructure can facilitate a safer environment
for travelers. These systems can enable the public to be aware of
imminent threats while helping highlight critical areas in need of
improvement and repair. However, current commercial lidar
systems are relatively expensive, subsequently reducing their
potential widespread feasibility. This effort endeavored to
minimize expenditures when attempting to generate a lidar
system of similar accuracy to commercial options. This was
accomplished by utilizing a Garmin LIDAR-Lite v3 as the

engine

dynamometer

pipe

 7 Copyright © 2019 by ASME

rangefinder and an Arduino Mega 2560 v3 microcontroller in
combination with two stepper motors. Overall, it was possible to
generate relatively accurate point clouds in MATLAB from
ASCII text files with upwards of 700,000 data points. With a cost
less than $300 (not including a 3-D printed mounting), this
increases the possibility of wide-ranging implementation.
Currently, this system is not suitable for mobile applications as
data collection time took around 1-2 hours. Nevertheless, the
system appears suitable for delivering information for public
transport reports. Finally, potential upgrades to the system (e.g.,
microprocessor and slip rings) can further improve speed,
robustness, and accuracy while not significantly growing its cost.

ACKNOWLEDGEMENTS

The research described in this paper is funded, in part, by the
Mid-America Transportation Center via a grant from the U.S.
Department of Transportation’s University Transportation
Centers Program, and this support is gratefully acknowledged.
The contents reflect the views of the authors, who are responsible
for the facts and the accuracy of the information presented
herein, and are not necessarily representative of the sponsoring
agencies.

REFERENCES
1. Xu, J.Q., Murphy, S. L., Kochanek, K. D., Bastian, B., and

Arias, E., 2018, "Deaths: Final Data for 2016," National
Vital Statistics Reports, 67(5), National Center for Health
Statistics: Hyattsville, MD.

2. National Center for Statistics and Analysis, 2018,
"Summary of Motor Vehicle Crashes: 2016 Data," Traffic
Safety Facts Report No. DOT HS 812 580, National
Highway Traffic Safety Administration: Washington, DC.

3. Mole, C. D. and Wilkie, R.M., 2017, "Looking Forward to
Safer HGVs: The Impact of Mirrors on Driver Reaction
Times," Accident Analysis and Prevention, 107, pp. 173-185
doi: 10.1016/j.aap.2017.07.027.

4. Goniewicz, K., Goniewicz, M., Pawłowski, W., and Fiedor,
P., 2015, "Road Accident Rates: Strategies and Programmes
for Improving Road Traffic Safety," European Journal of
Trauma and Emergency Surgery, 42(4), pp. 433-438, doi:
10.1007/s00068-015-0544-6.

5. Anarkooli, A. J., Hosseinpour, M., and Kardar, A., 2017,
"Investigation of Factors Affecting the Injury Severity Of
Single-Vehicle Rollover Crashes: A Random-Effects
Generalized Ordered Probit Model," Accident Analysis and
Prevention, 106, pp. 399-410, doi: 10.1016/j.aap.2017.07.
008.

6. American Society of Civil Engineers, 2019, "Infrastructure
Report Card," Available from: https://www.infrastructure
reportcard.org.

7. Puente, I., González-Jorge, H., Martínez-Sánchez, J., and
Arias, P., 2013, "Review of Mobile Mapping and Surveying
Technologies," Measurement, 46(7), pp. 2127-2145, doi:
10.1016/j.measurement.2013.03.006.

8. Kelly, M. and Di Tommaso, S., 2015, "Mapping Forests with
Lidar Provides Flexible, Accurate Data with Many Uses,"
California Agriculture, 69(1), pp. 14-20, doi: 10.3733/ca.
v069n01p14.

9. Garcia-Gutierrez, J., Gonçalves-Seco, L., and Riquelme-
Santos, J. C., 2011, "Automatic Environmental Quality
Assessment for Mixed-Land Zones using Lidar and
Intelligent Techniques," Expert Systems with Applications,
38(6), pp. 6805-6813, doi: 10.1016/j.eswa.2010.12.065.

10. Yang, B. S., Wei, Z., Li, Q., and Li, J., 2013,
"Semiautomated Building Facade Footprint Extraction from
Mobile LiDAR Point Clouds," IEEE Geoscience and
Remote Sensing Letters, 10(4), pp. 766-770, doi:
10.1109/LGRS.2012.2222342.

11. Chiang, K. W., Tsai, G.-J., Li, Y.-H., and El-Sheimy, N.,
2017, "Development of LiDAR-Based UAV System for
Environment Reconstruction," IEEE Geoscience and
Remote Sensing Letters, 14(10), pp. 1790-1794, doi:
10.1109/LGRS.2017.2736013.

12. Kromer, R. A., Hutchinson, D. J., Lato, M. J., Gauthier, D.,
and Edwards, T., 2015, "Identifying Rock Slope Failure
Precursors Using LiDAR for Transportation Corridor
Hazard Management," Engineering Geology, 195, pp. 93-
103, doi: 10.1016/j.enggeo.2015.05.012.

13. Neupane, S. R. and Gharaibeh, N. G., 2019, "A Heuristics-
Based Method for Obtaining Road Surface Type
Information from Mobile Lidar for Use in Network-Level
Infrastructure Management," Measurement, 131, pp. 664-
670, doi: 10.1016/j.measurement.2018.09.015.

14. Lienert, P., and S. Nellis, 2019, "Cheaper Sensors Could
Speed More Self-Driving Cars to Market by 2022,"
Available from: https://www.reuters.com/article/us-autos-
autonomous-lidar/cheaper-sensors-could-speed-more-self-
driving-cars-to-market-by-2022-idUSKCN1TD2MY

15. Blankenau, I., Zolotor, D., Choate, M., Jorns, A., Homann,
Q., and Depcik, C., 2018, "Development of a Low-Cost
LIDAR System for Bicycles," SAE Technical Paper 2018-
01-1051, doi: 10.4271/2018-01-1051.

16. Garmin Ltd., 2018, "LIDAR-Lite Arduino Library,"
Available from: https://github.com/garmin/LIDARLite_
Arduino_Library.

17. Arduino, 2019, "Servo Library," Available from:
https://www.arduino.cc/en/reference/servo.

18. Arduino, 2019, "Stepper Library," Available from:
https://www.arduino.cc/en/reference/stepper.

19. Meier, R., 2019, "Roger Meier's Freeware: CoolTerm,"
Available from: https://freeware.the-meiers.org/.

20. Jeon, W., and Rajamani, R., "Active Sensing on a Bicycle
for Simultaneous Search and Tracking of Multiple Rear
Vehicles," IEEE Transactions on Vehicular Technology,
68(6), pp. 5295-5308, doi: 10.1109/TVT.2019.2911572.

21. Williams, K., Olsen, M. J., Roe, G. V., and Glennie, C.,
2013, "Synthesis of Transportation Applications of Mobile
LIDAR," Remote Sensing, 5(9), pp. 4652-4692, doi:
10.3390/rs5094652.

https://www.infrastructurereportcard.org/
https://www.infrastructurereportcard.org/
https://www.reuters.com/article/us-autos-autonomous-lidar/cheaper-sensors-could-speed-more-self-driving-cars-to-market-by-2022-idUSKCN1TD2MY
https://www.reuters.com/article/us-autos-autonomous-lidar/cheaper-sensors-could-speed-more-self-driving-cars-to-market-by-2022-idUSKCN1TD2MY
https://www.reuters.com/article/us-autos-autonomous-lidar/cheaper-sensors-could-speed-more-self-driving-cars-to-market-by-2022-idUSKCN1TD2MY
https://github.com/garmin/LIDARLite_Arduino_Library
https://github.com/garmin/LIDARLite_Arduino_Library
https://www.arduino.cc/en/reference/servo
https://www.arduino.cc/en/reference/stepper
https://freeware.the-meiers.org/

