APPENDIX A-1

Motor

Rangefinder

/ Mount

=
Shaft — |
Coupler
YT Sleeve
Bearing
U-Bracket
Flat
Bearing
(=] N (=)
Stepper
Motor - Base

FIGURE A-1-1: ASSEMBLY OF LIDAR HOUSING SHOWING COMPLETE SYSTEM

o, 4400

o 4400
17.50 18.50
B o 00 - -| B
~
!
goo | o
-
nnn | s}
R10.00 1 | 2
Ry |
=4 3
3 .
% <5 '/5
- 5o
19.0(e 25.00 - 3.01
SECTION B-B 5.0
SECTION A-A -
36.50
A . L A
e
[an
5 MATERIAL SIZE DWG. NO.
MEXT ASSY LGED 0N e A U B rG C keTz
APPLCATICN B NOT SCALE DRAWNG SCALE: 1:2 WEIGHT: SHEET 1 OF 1

FIGURE A-1-2: U-BRACKET DRAWINGS (DIMENSIONS IN INCHES)

o
n
C

o

_I
o
o
=]
o
o
8
o
>

20021 ‘

@ 4.00 THRU

3.0
D300 THRU | SECTION AcA B A SECTION B-B
9.63 | _|
UNLESS OTHERWEE SPECIFED: HAME DATE
OIMENGONS AGE IINCHES | CRAWN
iy cHeckED TILE: A
WG PLAS i AR
THREE FLACE DEC G AFR
PR GEOMERIC an
PROMISTARY AND CONSDSNTAL TG P e
:ju:‘n:loumuuN:'ﬂNrn\(L‘Nwh MATERLAL - SIZE DWG. N. . REV
£ RangefinderMount
- ApUCATON DG NOI SEALE DR WING SCALE: 111 WEIGHT: SHEET 1 OF |

2 1

FIGURE A-1-3: RANGEFINDER MOUNT (DIMENSIONS IN INCHES)

70.00

14.60
&, 2.50
< L
I ~
!
o
<
= T
~
o .
= &k
o 7
= [}
1.50_| L- -‘[§
: 20,00 5.00
SECTION A-A
UNLESS OTHERWISE SPECIFIED: HAWE | DATE
DIMENSIONS ARE ININCHES | DRAWN
T
v cHecken TITLE:
ANGULAR: HACH: BEND +
THO PLACE DECIMAL + NG APER
THREE FLACE DECIMAL = G APPR
INTERPRET GEOMETRIC Q.
r:o:mmI:N o conToETal IDLERANCING FeR: P —
THE INFORMATION CONTARED I T MAATERIAL
LS SIE_DWG, NO REV
SPUSERT COMPANY NANE HERES, ANY
REFRODLCTICN I PART OF A5 A WHCLE . H AF h d B
i i RS e Inisheabase
INSER] COMPANY HAME HERES §
APPLICATION DO NET SCALE DRAWING SCALE: 1:1 WEIGHT: SHEET 1 OF 1
[a] 1

FIGURE A-1-4: BASE FOR LIDAR HOUSING (DIMENSIONS IN INCHES)

3o 1.00—=

25— e 1.37—=

P10

60—

1.

.._H—-.,._'E:_.*'g.r
=

R.30
R30
'0;81 \ R.13 @.20 A e -
E= (T o~ |l)
|
ILD'DB u;a:uu\ Il ||
'?,D l | I |l Jl :
[7.10 il e ﬂ—/_—l___d] 146°
Kix] :_%_T. -
5.33+ f 10— -05‘)
13 R21 i
2.76 9—
13 Lo r— " T
p A ! U _‘:|
Pt R13—"]
05 A SECTION A-A
60 70 70 ~| —35 SCALE 3/4
70 L 55—+
-] L 13 13«‘ -
217 217

All Dimensions are in inches (in)
Unless otherwise stated all
dimensions are symmetric

FIGURE A-1-6: MOUNTING PLATE DRAWING 2 OF 2 FOR SYSTEM COMPONENTS (DIMENSIONS IN INCHES)

APPENDIX A-2

LIDAR Lite v3HP Rangefinder
5VDC Nominal Draw (3.5 VDC idle)
65 mAidle, 85 during acquisition

680 yF Capacitor

o

Bath Resistors <
are 4.7 kQ i .

Horizontal Motor

28BY)-48 Stepper Mators

4 Full-Step Phases

5VDC Draw per Phase

300 O Resistance per Phase

Vertical Motor

fritzing

FIGURE A-2-1: WIRING SCHEMATIC FOR LIDAR SYSTEM

APPENDIX A-3: PYTHON CODE

1 [Jarod Bennett. University of Kansas Mechanical Engineering.

2 % Lov accuracy code to guickly produce a point cloud in about 7 minutes by running two 28byj-48 stepper motors with a Garmin Lidar-Lite v3HP using a Raspb
3 4 The final product is a .xyz file that can be read in Matlab to display a 3-D point cloud. The values are distance, horizontal angle, vertical angle.
4

S 4 Creatinga function that can be called in the Graphical User Interface to run the code

€

7 Hdef runCode():

8 import timeit #importing the timeit pythen libr to get a run time for the code

o start = timeit.default timer() #starting the timer

10

11 sanple datal= open("

12 sample datal.close()

13 sample_data2= open(”

14 sample_dataZ.close()

15 sample data3= open(”

16 sample_data3.closs()

17 sample_datad= open(”

18 sample datad.close()

19 from lidar_lite import Lidar Lite

20 lidar = Lidar_Lite()

21 import math

22 connected = lidar.connect (1)

23 import time

24 import RPi.GPIO as GPIO

25 GPIO.setwarnings (False)

26 GPIC. setmode (GPIC. BOARD) # Opening four .xyz files to write data into. If there is previous data in the .xyz files, the "w" clears them.
27 sample_datal= open("hozi E ",)

28 sample_datal.close()

28 sample data2= open(” , M)

30 sample_data2.closs()

31 sample_data3= open(”

32 sample data3.close()

33 sample datad= open(”

34 sample_datad.close()

35

36 # Importing the lidar_lite python file that is provided by Garmin. Allows lidar.getdistance to record the distance later on.
37 from lidar lite import Lidar Lite

38 lidar = Lidar Lite()

39 import math # Uses trigonometry from the Python math library to get the distance in the x axis.

40 connected = lidar.connect (1)

41 import time # Importing the time python library to be able to spesd up/slow dewn the moter. Also able to create pauses.
42 import RPi.GPIC as GPIO #gensral-purposs input/output pins on the Raspberry Pi. Can now refer to it as just GPIC.
43 GPIO.setwarnings (False) #gets rid of

44 GPIO.setmode (GPIO.BORRD) # Set GPIO numbering mode from the pins.

47 J] # Rotates the motor clockwise in the halfstep configuration.

48 clockwise = [

15 1,0,0,1],

50 1,0,0,01,

51 11,1,0,0],

52 [0,1,0,0],

53 e,1,1,0],

54 0,0,1,01,

55 [o,0,1,11,

6 0,0,0,1]

57]

s8

58 # Rotates the motor counterclockwise in the halfstep configuration.

60 © counterclockwise = [

6L [o,0,0,11,

62 0,0,1,1],

&3 0,0,1,0],

64 [o,1,1,01,

&5 e,1,0,0],

€6 1,1,0,0],

67 1,0,0,01,

& I 1,0,0,11,

€8]

70

71 # Moving the horizontal motor from its initial position to its starting position (15.5 degrees to the right).
72 control_pins = [12,16,18,22] #horizontal motor

73 © for pin in control pins:

T4 GPIO.setup(pin, GPIO.OUT)

5 o GPIC.output (pin, 0)

76

77 clockwise # Tells the motor which way to rotate (this variable was declared at the beginning of code).
78 ® for i in range(30): #this is for the degrees you want the motor to spin (S12= 360 degrees)

78 g for halfstep in range(8):

50 o for pin in range(4):

81 GPIO.output (control _pins(pin], clockwiselhalfstep][pin])

82 time.sleep(.005)

23

L # Moving the vertical motor from its initial position to its starting position (21.1 degrees up).

85 control_pins = [29,31,32,33] #vertical motor

EEC for pin in control pins:

87 GPIO.setup(pin, GPIO.OUT)

88 o GPIO.output {pin, 0)

28

90 clockwise # Tells the motor which way to rotate (this variable was declared at the beginning of code).

for halfstep in range(3):

a1 for i in range(30): §The degrees you want the motor to rotate (512= 360 degrees, 30= 21.1 degrees).
for pin in range(Z):

s | GPIO.output (control pins[pin], clockwise[halfstep] [pinl)

a5 time.sleep(.005)

a6

a7 # START OF LOOP

98 o for j in range(60): # Deteczmines how many sweeps the motor will do (Sweep = 15.5 degzees countezclockwise then 15.5 degrzees clockwise).
ag # Also the degzes zange for the vertical motor (§0%360 / 512 = 42.19 degzees) (+21 to -21 degzees))

100 contzol_pins = [12,16,18,22] #hozizontal motor

01 H for pin in contzol_pims:

102 GPIO.setup(pin, GPIC.OUT)

103 GPIO.cutput(pin, 0)

104 O for k in range(l,46): # Using the fullstepping configuzation, it takes 44 steps to move 31 degzess

105 counterclockwise # Moving the horizontal motor counterclockwise and recoding data

106 for i in range(l):

107 for halfstep in range (2

108 © for pin in range(4):

109 GPI0.output (control pins[pinl, counterclockwise[halfstep][pin])

110 time.sleep(.009)

111

112 horizontal angle= {23-k)*%4%.1758 # Records the horizonal angle throughout the sweep. Goes from -15.5 to 15.5 degrees.

113 print(” 1 1 % (horizontal angle)) # Shows the real-time horizontal angle value in the Shell. Delete if it is not needed.
114 sample_datal= open(" 1 angle.xyz", "a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

) as

116 | f.urite(str(horizontal angle)+ '\n') # Writes the angle value in a vertical list to the horizontal angle.xuyz file.
117

118 -j)*4% 1758 # Records the vertical angle. Goes from 21.1 to -21.1 degrees.

119 %" % (vertical_angle)) # Displays the real-time vertical angle value in the Shell. Delete if it is not needed.
120 - 1 1) # Opens the blank .xyz file. The "a" appends the value to the end of the file.
121 H i ert . A

122 f.wzite(stz(vertical_angle)+ '\n') # Writes the veztical angle value in a veztical list to the vertical_angle.xyz file.
123

124 distance = lidar.getDistance() # Uses the lidar.getDistance function from the lidar-lite.py file from Garmin
125 real distance= distance*math.cos(math.radians(vertical_angle))*math.cos(math.radians (horizontal angle))
126 " % (real_distance)) # Displays the real-time distance value in the Shell. Delete if it is not needed.
127 , "a") # Opens the klank .xyz file. The "a" appends the value to the end of the file.
128 o

129 r # Writes the distance valus in a vertical list to the distance.xyz file.
130

131 # Moving the motor clockwise back to the starting position. No data is recorded

132 control_pins = [12,1€,18,22] #horizontal motor

133 O for pin in control_pins:

134 GPIO.setup (pin, GPIC.OUT)

135 GPIO.output (pin, 0)

136 o for k in rangs(l,46):

137 clockwise

138 o for i in range(l):

138 © for halfstep in range(

140 © for pin in rangs(4):

139 for halfstep in range(

140 for pin in range(4):

141 GPIO.output (contrel pins[pin], clockwisel[halfstep][pinl)

142 time.sleep(.005)

143

144 4 Moves the vertical motor down .7 degrees going from +21.1 to -21.1

145 control _pins = [29,31,32,33] $vertical motor

146 G for pin in control pins:

147 GPIO.setup (pin, GFIO.CUT)

148 GPIO.output {pin, 0)

149 counterclockwise

150 © for i in range(l): #this is for the degrees you want the motor to spin (512= 360 degrees)

151 E for halfstep in range(

152 O for pin in range(4):

153 | GPIO.output (control_pins[pin], counterclockwise[halfstep][pin])

154 | time.sleep(.009)

155 | time.sleep(.05)

156

157 © tance.xyz') as filel, open('hor) as £ile2, open(as f£ile3d:
158 [entry.strip() for entry in filel]

159 content2= [entry.strip() for entry in file2]

160 f content3= [entry.strip() for entry in file3]

lel

162 with open(’outr vz', 'w') as file:

163 o for entryl, entry2, entry3 in zip(contentl, content2, content3):

le4 file.write (£ [entryl] [entry2) [entry3)'n')

165

16€ # Moving the horizontal motor from its initial position to its starting position (15.5 degrees to the right).

167 control pins = [12,1€,18,22] #horizontal motor

168 © for pin in control pins:

169 GPIO.setup(pin, GPIO.CUT)

170 GPIC.output (pin, 0)

171

172 counterclockwise # Tells the motor which way to rotate (this variable was declared at the beginning of code).

173 for 1 in range(30): #this 1s for the degrees you want the motor to spin (512= 360 degrees)

174 E for halfstep in range(8):

175 © for pin in range(4):

176 GPIC.output (control_pins(pin], counterclockwise[halfstep] [pin])

177 | time.sleep(.005)

178

179 # Moving the vertical motor from its initial position to its starting position (21.1 degrees up).

180 control_pins = [29,31,32,33] #vertical motor

il o for pin in control_pins:

182 GPIC.setup (pin, GPIO.OUT)

183 GPIC.output (pin, 0)

185 clockwise # Tells the motor which way to rotate (this variable was declared at the beginning of code).

186 LI for i in range(20):

187 E for halfstep in range(&

188 O for pin in range(4):

189 | GPIO.output (control pins[pin], clockwise[halfstep][pin])

190 | time.slesp(.005)

191

192 GPIO.cleanup ()

193

194 # Stops the timer and converts from seconds to minutes

195 stop = timeit.default timer()

19¢ print("” % ((stop-start)/&0))

197 5

FIGURE A-3-1: COMMENTED LOW RESOLUTION PYTHON CODE

[Jarod Bennett. University of Kansas Mechanical Engineering.

Medium accuracy code to produce a quality point cloud in about 11 minutes by running two 28b

The final product is a .xyz file that can be read in Matlab to display a 3-D point cloud. The values are distance, horizontal angle, vertical angle.

Creatinga function that can be called in the Graphical User Interface to run the code

Hdef runtede2():

import timeit #importing the timeit python Lib
start = timeit.default_timer() #starting the timer

to get a run time for the code

Opening four .xyz files to
sample_datal= open("horizon
sample_datal.close()

sample_dataZ= open("ve
sample_dataZ.close()
sample_data3= open("<
sample_data3.closs()
sample_datad= open(”
sanple_datad.closs()

ite data into. If there is previous data in the .xyz files, the "w" clears them.

=", ")

Importing the lidar lite python file that is provided by Garmin. Allows lidar.getdistance to recozd the distance later on.
from lidar lite import Lidar Lite

lidar = Lidar Lite()

import math § Uses trigonomet
connected = lidar.connect (1)

from the Python math library to get the distance in the x axis.

import time # Importing the time python library to be able to speed up/slow down the motor. Also able to create pauses.
import RPi.GPIO as GFIO #general-purpose input/output pins on the Raspber
GPIO.setwarnings (False) #gets rid of

GPIO.sstmode (GPIO.BOARD) # Set GPIO numbsring mods from the pins.

Pi. Can now refer to it as just GPIO.

Rotates the motor clockwise in the fullstep configuration.
clockwise = [

[1,0,0,01,

[e,1,0,01,

[e,o0,1,01,

[e,0,0,17,

1

% Rotates the motor counterclockwise in the fullstep configuration.

counterclockwise = [

[1,0,0,01,
1

Moving the horizontal motor from its initial position to its starting position (15.5 degrees to the right).
control pins = [12,16,18,22] #Pins the horizontal motor is connected into the rapsbe pi.

for pin in control_pins:
GPIO.setup(pin, GEIO.OUT)
GPIO.output (pin, 0)

clockwise # Tells the motor which way to rotate (this variable was declared ab the beginning of code) .
for i in range(22): #The degrees you want the motor to rotate (512= 360 degrees, 22= 15.5 degrees).
for halfstep in range (4]
for pin in range(4):
GPI0.output (control_pins(pin], clockwise[halfstep] [pin])
time.sleep(.005!

Moving the vertical motor from its initial position to its starting position (21.1 degrees up).
contzol_pins = [29,31,32,33] #Pins the vertical motor is connected imte the rapsherzy pi.
for pin in control_pins:

GPIO.setup(pin, GEIO.OUT)

GPIO.output(pin, 0)

clockwise # Tells the motor which way to rotate (this variable was declared at the beginning of code).
for i in range(30): #The degrees you want the motor to rotate (512= 360 degrees, 30= degrees) .
for halfstep in range(4):
for pin in range(d):
GPIO.output (contzol pinsipin], cleckwiselhalfstep] [pin])
tine.sleep(.005)

4 Separating the full step counterclockwise to 4 individual full steps
counterclockwisel = [

10,0,0,11,

1

counterclockwise2 = [
10,0,1,01,

1

counterclockwised = [
10,1,0,01,

1

countezclockwised = [
[1,0,0,01,

1

START OF LOOP
for j in range (50)

Determines how many sweeps the motor will do (Sweep = 15.5 degrees count:
Blso the degree range for the vertical mobor (60%360 / 512 = 42
control_pins = [12,16,18,22] #horizental motor

for pin in control pins:

rclockwise then 15.5 degrees clockwise).
degrees) (+21 to -21 degrees))

48 stepper motors with a Garmin Lidar-Dite v3HF using a Raspber

Moves the vertical motor down .7 degrees going from 42
contral pins = [29,31,32,33] #vertical motor
for pin in control pins:

GPI0.setup(pin, GPIO.OUT)
GPIO. output (pin, 0)

for k in range(l,46): # Using the fullstepping configuration, it takes 44 steps to move 31 degrees

counterclockwisel # Moving the first full step and recording data
for i in range(l):
for fullstep in range(l):
for pin in range(d):
GPIO.output (contzol_pins[pin], counterclockwisel[fullstep] [pin])
time.sleep(.009

horizontal anglel= (23-k)*4*.1758 # Records the horizonal angle throughout the sweep. Goes from -15.5 to 15.5 degrees.

print (" " % (hozizontal anglel)) # Shows the real-vime horizontal angle value in the Shell. Delete if it is not necded.
sample_datal= open(", "a") # Opens the blank .xyz file. The "a" appends the value to the =nd of the file,
with open (" ") as £

f£.write(str(horizontal anglal]+ "\n') # Writes the angle value in a vertical list to the horizontal angle.xyz file.

~3)#4%.1758 # Records the vertical angle. Goes from 21.1 to -21.1 degrees.
= (vertical angle)) # Displays the zeal-time vertical angle value in the Shell. Delete if it is not needed.
") # Opeas the blank .xyz file. The "a" appends the valuc to the end of the file.

fourite (str(vertical anglEJ+ ‘\n') # Writes the vertical angle value in a vertical list to the vertical angle.xyz file.

distance = lidar.getDistance() # Uses the lidar.getDistance function from the lidar-lite.py file from Garmin
real_distance= distance*math.cos(math.radians (vertical_angle))*math.cos (math.radians (horizontal_anglel))
3,

print(" "% (real distence)) § Displays the zeal-time distane value in the Shell. Delete if it io not needed.
sample datel= open('i: ", "a"} # Opens the blamk .xyz file. The "a" appends the valus to the end of the file.
with open (") as £:

Fourite (str(zeal dlstanca)+ n') % Writes the distance value in a vertical list to the distance.xyz file.

counterclockwise2 # Moving the second full step and recording data
for i in range(l):
for fullstep in range(l)
for pin in range(d
GPIO.output (contral_pins[pin], counterclockwise2[fullstep] [pin])
time.sleep(.008)

horizental_angle2= horizontal englel=.1758 # Records the horizonal angle throughout the sweep. Goss from —15.5 to 15.5 degrees.

print (" "y (hnr)zﬂntﬂl _angle2)) # Shows the real-time horizontal angle value in the Shell. Delete if it is not needed.
sample_data. 4 Opens the blank .xyz file. The "a" appends the value to the =nd of the file.
with open (" as £

f.urite(str(horizontal angla2]+ "\n') # Writes the angle value in a vertical list to the horizontal angle.xyz file.

vertical_angle= (30-3)44.1755 # Records the vertical angle. Goes from 21.1 to 211 degrees.

print (" 25" % (vertical angle)) # Displays the real-time vertical angle value in the Shell. Delete if it is not needed.
print("ve; ng ® (veltlcal _angle)) # Displays the real-time vertical angle value in the Shell. Delete if it is not needed.
sample_dataz= open(" 1 y) # Opens the blank .xyz file. The "a" appends the value to the end of the file.
with open(” ”) as £:

f.urite (str(vertical angle)+ ‘\n') # Writes the vertical angle value in a vertical list to the vertical angle.xyz file.

distance = lidar.getDistance() # Uses the lidar.getDistance function frem the lidar-lite.py file from Garmin
real_distance= distance‘math.cos(math.radians (vertical_angle))*math.cos (math.radians (horizontal angle2))

print ("o = = %5 % (real_distance)) # Displays the real-time distance value in the Shell. Delete if it 1s not needed.
ssaple_datal= open(” yz", # Cpens the blank .xyz file. The "a" appends the value to the end of the file.
with open (s wyz", "a2") as £

F.urite (str (real_distance)+ "\n'} § Writes the distance value in a vertical list to the distance.xyz file.

counterclockwised # Moving the third full step and recording data
for 1 in range(l):
for fullstep in range(l):
for pin in range(4):
GEIG.output (control_pinsipin], counterclockwise3[fullstep] [pin])
time.slesp(.009)

horizontal_angle3= horizontal_angle2-.1758 # Records the horizonal angle throughout the swesp. Goss from -15.5 to 15.5 de
25" % (horizontal angle3)) # Shows the real-time horizontal angle value in the Shell. Delete if it is not needed.

") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

zites the angle value in a vertical list to the horizomtal angle.xyz file.

vertical angl m 21.1 to -21.1 degree:

print(" (vextu:al angle)) "% Displays the real-bime vertical angle elue in the Shell. Delete if it is nob nesded.
sample_c data.) # Opens the blank .xyz file. The "a" appends the value to the end of the file.
with open(”

Fourite (str (verbical_angle)+ '\n') # Writes the verbical angle value in a vertical list to the vertical_angle.sys file.

distance = lidar.getDistance() # Uses the lidar.getDistance function from the lidar-lite.py file from Garmin
real_distance= distance*math.cos(math.radians(vertical_angle))“math.cos {math.radians (horizontal_angle3))

= %" % (real_distance)) # Displays the real-time distance value in the Shell. Delete if it is not needed.
. # Opens the blank .xyz file. The "a” appends the value to the end of the file.

xyz",
e as £
f£.urite(str(real distance)+ '\n') # Writes the distance value in a vertical list to the distance.ryz file.

counterclockwised # Moving the fourth full step and recording data
for i in range(l):
for fullstep in range(l):
for pin in range(4)
GPIC. cutput (contzel pinslpinl, counterclockwised[fullstep][pin])
time.sleep(.009)

horizontal_angle3-.1758 # Records the horizonal angle throughout the sweep. Goes from -15.5 to 15.5 degrees.

horizontal_angle
n 2y (hurnzﬂntﬂl _angled)) # Shows the zeal-time horizontal angle value in the Shell. Delete if it is not needed.

g . 7a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.
,) as £:
f.write (str(horizontal angls‘i)i "\n') # Writes the angle value in a vertical list to the horizental angle.xyz file.
vertical angle= (30-3)*41.1759 § Records the vesticel ansle. Goes frem 21

%" % (vertical angle)) # Displays the real-time vertical angle alue in the Shell. Delete if it is not nesded.
yz", "a") # Opens the blank .xyz file. The "a" appends the valus to the end of the file.

as £:

f.write (str(vertical angle)i "\n') # Writes the vertical angle value in a vertical list to the vertical angle.xyz file.

distance = lidar.getDistance() # Uses the lidar.getDistance function frem the lidar-lite.py file from Garmin
distance*math.cos (math.radians (vertical angle))*math.cos (math.radians (horizontal angled))

%2" & (real distance)) # Displays the real-time distance value in the Shell. Delste if it is not nesded.
xyz", "a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

a7

f£.write(str(real distance)+

xyz",

) # Writes the distance value in a vertical list to the distance.xyz file.

Moving the motor clockwise back to the starting position. No data is recorded
control pins = [12,1,18,22] #h
for pin in control_pins:

zontal motor

GPIO.sctup (pin, GEIO.OUT)
GPIO.output (pin, 0)

for k in range(l,46): # Using the fullstepping configuration, it takes 44 steps to move 31 degrees

clockwise
for i in range(l): # Moves 1 step (.7 degrees) a total of 44 times
for fullstep in range(4):
for pin in range(4):
GPIC.output (contzel pins(pin], clockwise[fallstep]pin])
time,slecp(.009)

GPIO.setup (pin, GPIO.OUT)
GPIO.output (pin, 0)

counterclockuise
for 1 in range (L

Moves 1 step (.7 degrees) a total of 60 times (42.2 degrees)
for fullstep in range (4
for pin in range(4):
GEIO.output (control pins(pin], counterclockwise[fullstep]lpin])
time.sleep(.00%)

This section converts the distance, vertical, and horizontal .xyz files into entry str

with open(’ v=") as filel, open(
contentl= [entry.strip() for entry in filel]
content. [entzy.strip() for enmtzy im filel]
content3= [entry.strip() for entry in file3]

) as £ile3:

) as £ile2, open(’

Produces a .x with e columns: distance, zontal angle, vertical angle.
with open(’cutput . 'w') as file:
for entryl, entry2, emtry3 in zip(comtentl, content2, content3):
file.write (' (entryl] (entry2) (entry3;\n')

Moving the horizontal motor from its initial position to its starting position (15.5 degrees to the right).
control_pins = [12,16,18,22] #Pins the ho
for pin in control pins:

GPIO.setup (pin, GPIO.OUT)

GBIO.output (pin, 0)

ontal motor is connected

counterclockwise # Tells the motor which way to rotate (this d at the beginning of code).

for i in range(22): #The degress you want the motor to rotate 15.5 degrees).
for fullstep in range(4):
for pin in range(4):
GPIO.output (control_pins[pin], counterclockwise[fullstep] [pin])
time.sleep(.0
Moving the vertical motor from its initial position to its starting position (21.1 degrees up).

control_pins [29,31,32,33] #Pins the vertical motor is connected into the rapsb
for pin in comtrol_pinms:

GPIO.setup(pin, GPIO.OUT)

GPIO.output (pin,

clockwise # Tells the motor whe
for i in range(30): #The degrees you want the motor to rotate
for fullstep in range(4):
for pin in range(4):
GPIO. cutput (control_pins[pin], clockwise[fullstep][pin])
time.sleep(.005)
GPIC.cleanup ()

h way to rotate (this v

aning of code) .
1.1 degzees).

Stops the timer and converts from seconds to minutes
stop = timeit.default_timer()
print(" :

" % ((stop-start)/&0))

FIGURE A-3-2: COMMENTED MEDIUM RESOLUTION PYTHON CODE

ps to be combined into one file

[T R S

ko

#H

arod Bennett. University of Ransas Mechanical Engineering.

igh accuracy code to produce the best point cloud using two 28byj-48 stepper motors with a Garmin Lidar 4.

Lite v3HP using a Raspberry

The final product is a .xyz file that can be read in Matlab to display a 3-D point cloud. The values are distance, horizontal angle, vertical

FC
Bldef

reatinga function that can be called in the Graphical User Interface te run the code
runCode3 () :

import timeit #importing the timeit python library to get a run time for the code
start = timeit.default_timer() #starting the timer

% Opening four .xyz files to write data into. If there is previous data in the .xyz files, the "w" clears them.
sample_datal= open(" gz,)

sample_datal.close()
sample_data2= open("
sample_data2.clese ()
sample data3= open(”
sample data3.close ()
sample_data4= open(”
sample_data4.close()

Importing the lidar lite python file that is provided by Garmin. Allows lidar.getdistance to record the distance later on.
from lidar lite import Lidar Lite

lidar = Lidar_Lite()

import math # Uses trigonometry from the Python math library to get the distance in the x axis.

connected = lidar.connect(l)

import time # Importing the time python library to be able to speed wp/slow down the motor. Also able to create pauses.
import RPi.GPIC as GPIC #general-purpose input/output pins on the Raspberry Pi. Can now refer to it as just GPIO.
GPIO.setwarnings (False) #gets rid of

GPIO.setmode (GPIO.BORRD) # Set GPIC numbering mode from the pins.

Rotates the motor clockwise in the halfstep configuration.

clockwise = [
(1,0,
Lo,
1,
[0,1,0,01,
[o,1,1,01,
[0,0,1,01,
[0,0,1,11,
[0,0,0,11

Rotates the motor counterclockwise in the halfstep configuration.
counterclockwise = [

[e,0,0,11,

[o,0,1,11,

[o,0,1,01,

[0, 1,1,01,
1.

[0, 1,0,
[l 1,000,
[L.0.0,01,
[L,0,0,1]1,

1

Moving the horizontal motor from its initial position to its starting position (15.5 degrees to the right).
control pins = [12,16,18,22] #Pins the horizontal motor is connected into the rapsberry pi.
for pin in control pins:

GPIO.setup(pin, GPIO.OUT)

GPIO.output{pin, 0}

clockwise # Tells the motor which way to rotate (this variable was declared at the beginning of code).
for i in range{22): #The degrees you want the motor to rotate (512= 360 degrees, 22= 15.5 degrees).
for halfstep in range(f):
for pin in range(4):
GPIO.cutput (control_pins[pin], clockwise[halfstep] [pinl)
time.sleep(.005)

Moving the vertical motor from its initial position to its starting position (21.1 degrees up).
control_pins = [29,31,32,33] #Pins the vertical motor is connected into the rapsberry pi.
for pin in control pins:

GPIO.setup (pin, GPIO.OUT)

GPIO.output (pin, 0)

clockwise # Tells the motor which way to zotate (this vaziable was declazed at the begimning of code).
for i in range({30): #The degrees you want the motor to rotate (512= 380 degrees, 30= 21.1 degrees).
for halfstep in range(Z):
for pin in range(4):
GPIO.cutput (control pinslpin], clockwise[halfstep] [pin])
time.sleep{.005)

Separating the half step counterclockwise to 8 individual half steps
counterclockwisel = [
10,0,0,11,
1
counterclockwise2 = [
0,0,1,11,
1

counterclockwise3 = [
[0,0,1,01,

angle.

a3
94
as
13
a7
a8
a9
100

102
103

139
140
141
142

147
148
149

171
172
173

countezclockwised = [
e,1,1,01,

1

counterclockwiseS = [
e, 1,0,01,

1

counterclockwiseé = [
[, 1,001,

1

counterclockwise? = [
[1,0,0,01,

1

countezclockwised = [
[1,0,0,11,

1

STRRT OF LOOP
for j in range(60): # Determines how many sweeps the motor will do (Sweep = 15.5 degrees counterclockwise then 15.5 degrees clockwise).
Blso the degree range for the vertical motor (£0%360 / 512 = 42.19 degrees) (+21 to -21 degrees))
contrel_pins = [12,16,18,22] #horizontal motor
for pin in control pins:
GPIO.setup{pin, GPIC.OUT)
GPIO.output (pin, 0)
for k in range(l,46): # Using the fullstepping configuration, it takes 45 steps to move 31 degrees (+15.5 to -15.5 dgrees)

countezclockwisel # Moving the fizst half step and zecording data
for i in range(l):
for fullstep in range(l):
for pin in range():
GPIO.output (contzol_pins([pin], countezclockwisel[fullstep] [pin])
time.sleep(.009)

379 # Recozds the hozizonal angle throughout the sweep. Goes from -15.5 to 15.5 degzees.

" % (horizontal anglel)) # Shows the real-time horizontal angle value in the Shell. Delete if it is not needed.
xyz", "a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

iy , as f:

f.write (str{horizontal anglel)+ '\n') # Writes the angle value in a vertical list to the horizontal angle.xyz file.

vertical_angle= (30-3)%4%.1758 # Recozds the veztical angle. Goes fzom 21.1 to -21.1 degzees.
print (" 1 1 % (vertical angle)) # Displays the real-time vertical angle value in the Shell. Delete if it is not needed.
1 yz", "a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

X

f£.write{str(vertical angle)+ '\n') # Writes the vertical angle value in a vertical list to the vertical angle.xyz file.

distance = lidar.getDistance() # Uses the lidar.getDistance function from the lidar-lite.py file from Garmin
real distance= distance‘math.cos(math.radians(vertical angle))*math.cos(math.radians(horizontal anglel))

% (real distance)) # Displays the real-time distance value in the Shell. Delete if it is not needed.
"a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

f.write(str(real distance)+ '\n') # Writes the distance value in a vertical list to the distance.xyz file.
counterclockwise2 # Moving the second half step and recording data
for i in range(l):
for fullstep in range{l):
for pin in range(4):
GPIO.output (control_pins[pin], counterclockwiseZ2[fullstep] [pin])
time.sleep(.009)

horizontal angle2= horizontal anglel-.037¢ # Records the horizonal angle throughout the sweep. Goes from -15.5 to 15.5 degrees.
print (" 1 1 "% (horizontal angle2)} # Shows the real-time horizontal angle value in the Shell. Delete if it is not needed.
1 ') # Opens the blank .xyz file. The "a" appends the value ta the end of the file.

%
f.urite (str(horizontal_angle2)+

Writes the angle value in a vertical list to the horizontal_angle.xyz file.

vertical_angle= (30-3)%4%.1758 # Recozds the vertical amgle. Gess from 21.1 to -21.1 degrees.
= %" % (vertical_angle)} # Displays the zeal-time veztical angle value im the Shell. Delete if it is not needed.
1 le.xyz", "a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

with open ("ve 1 xyz", "a") as £:

f.write (str(vertical angle)+ '\n') # Writes the vertical angle value in a vertical list to the vertical angle.xyz file.
distance = lidar.getDistance({) # Uses the lidar.getDistance function from the lidar-lite.py file from Garmin
real_distance= distance‘math.cos (math.radians (vertical angle))‘math.cos(math.radians (horizontal_angle2))

print (" % (zeal_distance)} # Displays the real-time distamce value in the Shell. Delete if it is not meeded.
sample_datal= open(" ", "a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.
with open()

f.write (str(real_distance)+ '\n') # Writes the distance value in a verbical list to the distance.xyz file.
counterclockwise3 # Moving the third half step and recording data
for i in range(l):
for fullstep in range{l):
for pin in range(4):
GPIO.output (contzol_pins([pin], countezclockwise3[fullstep][pin])
time.sleep(.008)

horizontal angle3d= horizontal angle2-.0879 # Records the horizenal angle throughout the sweep. Goes from -15.5 to 15.5 degrees.
angle3)) # Shows the real-time horizontal angle value in the Shell. Delete if it is not needed.
') # Opens the blank .xyz file. The "a" appends the value to the end of the file.

185
186

lss
189
190
191
192
193

185
1896

198
199

201
202
203
202
205
206

208
209

211
212

214
215
216
217
218
219

221
222

224
225

227
228
229
230
231
232
233
234
235
238
237
238
239
240
241
242
243
244
245
248
247
248
249
250
251
252
253
254
255
2586
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

with open("ho:

vertical_angl
print ("

sample_data2= open |

with open(”

(30-3)%4%,1758 # Records the vertical angle. Goss from 21.
#=" % (vertical_ang

f£.urite (str(vertical angle)+ "\n') # Wr

distance = lidar.getDistance() # Uses the 1
real distance

to -21.1 degrees.
le)) # Displays the real-time vertical angle value in the Shell. Delete if it is not needed.
") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

ites the vertical angle value in a vertical list to the vertical angle.xyz file.

1dar.getDistance function from the lidar-lite.py file from Garmin

distancemath.cos (math.radians (versical_angle)) “math.cos (math.radians (horizontal angled))

S Eet %

(real_distance)) #

i

Displays the real-time distance value in the Shell. Delete if it is not needed.

"a") # opens the blank .xyz file. The "a" appends the value to the end of the file.

tes the distance value in a vertical list to the distance.xyz file.

counterclockwised # Moving the fourth half step and recording data

for i in range(1):

for fullstep in range(l):

for pin in

range (4) :

GPIC.output (control pins[pin], counterclockwised [fullstep] [pin])
time.sleep(.009)

horizontal angled= horizontal angled-
%

print ("
sample_datal
with open(":

£.urite (str (horizental_angled)+

vertical_angle= (30-3)

print ("

sample_data2= open |

with open(”

878
% (hDIlZEDtal

") #

#4%.175% # Records the vertical angle. Goes from 21.
#=" % (vertical_ang

f£.urite (str(vertical angle)+ "\n') # Wr

distance = lidar.getDistance() # Uses the 1
distancemath.cos (math.radians (versical_angle)) “math.cos (math.radians (horizontal angled))

real_distance:
print (05

sample_data
with open(”

£. wzu:e(stx-tzeal d;stance)& "\n

S Eet %

(real_distance)) #

i

Records the horizonal angle throughout the sweep. Goss from -15.5 to 15.5 degrees.
angled)) # shows the real-time horizomtal angle value in the shell. Delete if it is not needed.
4 Opens the blank .xyz file. The "a" appends the value to the end of the file.

Writes the angle value in a vertical list to the horizontal angle.xyz file.

to -21.1 degrees.
le)) # Displays the real-time vertical angle value in the Shell. Delete if it is not needed.
") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

ites the vertical angle value in a vertical list to the vertical angle.xyz file.
idar.getDistance function from the lidar-lite.py file from Garmin

Displays the real-time distance value in the Shell. Delete if it is not needed.

"a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

tes the distance value in a vertical list to the distance.xyz file.

counterclockwiseS # Moving the fifth half step and recording data

for i in range(1):

for fullstep in range(l):
for pin in range(4):
GPIO.output (control pins[pin], counterclockwise3[fullstep] [pin])
time.sleep(.009)

horizontal angle5= hoxi

ntal_angled-.087
% (norazons

as

£.write (str(horizontal angleslr "\n')

vertical angle= (30-3)*4%.1758 # Records the vertical angle. Goes from 21

% (vertical a
1 xyz",
") as £

£.write (str(vertical angle)f \n') #

distance = lidar.getDistance() # Uses the
real distance

f.write [str[zeal dxstam:e] +

(zeal _distance))

nany #
£

R

¢ # Records the horizonal angle throughout the swesp. Goes from -15.5 to 15.5 degress.
al_angle5})) # Shows the real-time horizontal angle value in the Shell. Delete if it is not needed.
Opens the blank .xyz file. The "a" appends the value to the end of the file.

£:
Writes the angle value in a vertical list to the hozizontal angle.xyz file.

to -21.1 degrees.
ngle)) # Displays the real-time vertical angle valus in the Shell. Delete if it is not nesded.
a") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

Writes the vertical angle value in a vertical list to the vertical angle.xzyz file.

lidar.getDistance function from the lidar-lite.py file from Garmin

dxstance*math cos (math.radians (vertical_angle)) *math.cos (math.radians (horizontal_angle3))

4 Displays the real-tins distance valus in the Shell. Delete if it is not nesded.
Opens the blank .xyz file. The "a" appends the value to the end of the file.

rites the distance value in a vertical list to the distance.xyz file.

counterclockwiseé # Moving the sixth half step and recording data

for i in range(l):

for fullstep in range(l):
for pin in range(4):
GPIO.output (control pins[pin], counterclockwise&[fullstep] [pin])
time.sleep(.009)

horizontal angleé= horizontal angleS-

print ("
sample_datal=
with open ("t

£.write (str(horizontal angleel +

vertical_angl

open |

7
"% [hm:).zunt

2

(30-3)*4%.1758 # Records the vertical angle. Goes from 21

%t [vﬁxtxcal a

distance = lidar.getDistance() % Uses the
real_distance= distance‘math.cos (math.radians (vertical angle))“math.cos (math.radians (horizontal angle3))

print(

*

(zeal distance))

9 # Records the horizonal angle throughout the sweep. Goes from -15.5 to 15.5 degrees.
al_angle€)) # Shows the real-time horizontal angle value in the Shell. Delete if it is oot nesded.
’ # Opens the blank .xyz file. The "a" appends the value to the end of the file.

Writes the angle value in a vertical list to the hozizontal angle.xyz file.

to -21.1 degrees.
ngle)) # Displays the real-time vertical angle valus in the Shell. Delete if it is not nesded.
"a") § Opens the blank .xyz file. The "a" appends the value to the end of the file.

ites the vertical angle value in a vertical list to the vertical angle.xyz file.
lidar.getDistance function from the lidar-lite.py file from Garmin

Displays the real-time distance value in the Shell. Delete if it is not needed.

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
302
393
394
395
396

vz file. The

sample_datal= open (S
with open(
f.urite(str(real mscancen

Opens the blank .

appends the value to the end of the file.

4 Writes the distance value in a vertical list to the distance.xyz file.

counterclockwise] # Moving the seventh half step and
for i in range(l):
for fullstep in range(l):
for pin in range(4):
GPIO.output (control pinsipin], counterclockwisel[fullstep] (pinl)
time.sleep(.009)

ing data

horizontal_angle= horizontal_angle6-.

rizonal angle throughout the sweep. Goes

print (" = 224 (horizental_angle7)) # Shows the real-time h
sample_data. "a") # Opens the blank .xyz file. The "a” appends the value to the end of the file.
with open("’

rites the angle value in a vertical list to the horizontal angle.xyz file.

vertical angle= (30-3)*4%.1758 # Records the vertical angle. Goes from 21.1 to -21.1 degrees.

with open ("
f.write(str(vertical angle)+

2') # Writes the vertical angle value in a vertical list to the vertical anmgle.xyz file.

distance = lidar.getDistance() § Uses the lidar.getDistance function from the lidar-lite.py file from Gammin

real distance= distance‘math.cos(math.radians(vertical angle))*math.cos (math.radians (horizontal angle3))

= %" % (real_distance)) # Displays the real-time distance value in the Shell. Delete if it is not needed.
e # Opens the blank .xyz file. The "a" appends the value to the end of the file.

£.write(str(real distance)+ '\n'} # Writes the distance value in a vertical list to the distamce.zys file.
counterclockwise8 # Moving the eighth half step and recording data
for i in range(l):
for fullstep in range(l):
for pin in range(4):
GPIO.sutput (contrel pinspin], terclockwises [fullstep] [pin])
time.slesp(.009)

horizontal angleS= horizental angleT-
print ("~
sample_datal= open("
with open("h

f£.write(str(horizontal angle8)+ '\n') # Writes the angle value in a vertical list to the horizontal engle.xyz file.

xy2",

vertical angle= (30-3)*4*.1758 # Records the vertical angle. Goes from 21
print ("
sample data2= open ("

to -21.1 degrees.

2") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

sample datal= open
with open ("
£.urite (str(vertical anglE]+

distance = lidar.getDistance() # Uses the lidar.getDistance function from the lidar-lite.py file from Garmin
real_distance= distance*math.cos (math.radians(vertical_angle))*math.cos (math.radians (horizontal_angle3))

xyz",
") as £

f.write (strireal dlstancs]+ \n') # Writes the distance value in a vertical list to the distance.xyz file.

Moving the motor clockwise back to the starting position. No data is recorded
control_pins = [12,1€,18,22] #horizontal motor
for pin in control pins:
GPIO.setup (pin, GPIO.CUT)
GPIO.output (pin, 0)
for k in range(1,46): # Using the fullstepping configuraticm, it takes 44 steps to move 31 degrees
clockwise
for i in range(l): # Moves 1 step (.7 degrees) a total of 44 times
for halfstep in range(8)
for pin in range(4
GPIO.output (control_pins(pin], clockwise[halfstep][pin]
tine.slesp(.005)

Moves the vertical motor down .7 degrees going fx

control pins = [29,31,32,33] #vertical motor
for pin in contzol pims:
GPIO.setup(pin, GPIO.CUT)
GPIO.output (pin, 0)
counterclockwise
for i in range(l): # Moves 1 step (.7 degrees) a total of €0 times (42.2 degrees)
for halfstep in range ()
for pin in range(4):
GPIO. Dutput(cuntzul)l.nﬁ[pln]r counterclockwise [halfstep] [pin])
time.sleep(.009)

m +21.1 to -21.1

This section comverts the distance, vertical, and horizontal .xyz files into entry strips to be combined into one file
with open(’ ') as filel, open(’ ') as file2, open(’) as filed:
contentl= [entzy.strip() for entzy in filel]
content2= [entry.strip() for entry in file2]
content3= [entry.strip() for entry in file3]

Produces a .xyz file with three columns: distance, horizontal angle, vertical angle.
with open(’ ‘w') as file:
for entryl, entry2, emtry3 in zip(contentl, comtent2, content3):

file.write(f' (entzyl] [entry2) lentzyd)'n')

Moving the horizontal motor from its initial position to its starting position (15.5 degrees to the right).

control_pins = [12,16,18,22] #Pins the horizontal motor is commected into the rapsbe

for pin in control pins:
GPIO.setup(pin, GPIO.OUT)
GPIO.output (pin, 0)

counterclockwise # Tells the motor which way to rotate (this variable was declared at the beginming of code).
i): #The degrees you want the motor to rotate (512= 360 degrees, 22= 15.5 degrees).
for halfstep in range(8):
for pin in range(4):
GPI0.output (control pins[pin], counterclockwise[halfstep] [pin])
time.sleep(.005)

for i in range(

Moving the vertical motor from its initial position to its starting position (21
control_pins = [29,31,32,33] #Pins the vertical motor is comnected into the rapsber:x:
for pin in control pins:

GPIO.setup(pin, GFIO.OUT)

GPIO.output (pin, 0)

degrees up).
pi.

clockwise # Tells the motor which way to rotate (this v
for 1 in rangs(30): #The degrees you want the motor to rotate (512= 360 degrees, 30= 21
for halfstep in range(3):
for pin in range(4):
GPIO.output (control pins(pin], clockwise[halfstep][pin])
time.sleep(.005)
GPIO.cleanup()

able was decl

d at the beginning of code).

1 degrees).

Stops the timer and converts from seconds to minutes
stop = timeit.default_timer()
print(

% ((stop-start)/€0))

FIGURE A-3-3: COMMENTED HIGH RESOLUTION PYTHON CODE

2 5 .5
izontal angle value in the Shell. Delebe if 4t is

(vertical anqlE)J # Displays the real-time vertical angle value in the Shell. Delete if it is nmot
Opens the blank .xyz file. The "a” appends the valus to the end of the file.

79 # Records the horizomal angle throughout the sweep. Goes from -15.5 to 15.5 degrees.
s" % (horizontal_angle8)) # Shows the real-time horizontal angle value in the Shell. Delete if it is
") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

3" % (vsxt.u:al _angle)) # Displays the real-time vertical angle value in the Shell. Delete if it is not

') # Writes the vertical angle value in a vertical list to the vertical angle.x

not nesded.

needed.

not needed.

nesded.

") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

yz file.

%s" % (real_distance)) # Displays the real-time distance value in the Shell. Delete if it is not needed.
") # Opens the blank .xyz file. The "a" appends the value to the end of the file.

APPENDIX A-4

KU Mechanical Engineering
3rd Generation Lidar System
MID-AMERICA

TRANSPORTATION CENTER

FIGURE A-4-1: SCREEN SHOT OF GRAPHICAL USER INTERFACE

WO m s W

from tkinter import *
from Low import runCode

from Medium import runCodez
from High import runCode3
from PIL import Image, ImageTk
import lidar lite

root = Tk()
root.wm_title ("CUL")
root.configure (bg:

screen_width = root.winfo_screenwidth()
screen_height =

root.attributes ("

. True)

def LowRes():
runCode ()

gt btosxit():
root.destroy ()
end_fullscreen (event)

?d:f
root.attributes ("

et edres () :
runCode? ()
HighRes () :

Tdcf
runCode3 ()

load= Image.open(" |-

root.winfo_screenheight ()

False)

load = load.resize((round(screen width*0.12),round(screen_width*0.12)), Image.ANTIALIAS)
render =

ImageTk.PhotoImage (load)
image=render,
MATCimage . ipg

"

render? =
img2 =

ImageTk.PhotoImage (load2)
Label (root, image=render2)

label 1 = Label (root,

round (scre
round (scree

ol

en_width*0.01),
en_height*0.01), justify='cencer’)

= load2.resize((round(screen_width*0.2025),round (screen_width*0.108)), Image.ANTIALIAS)

“, font="verdar bold®,

t

jlewButton = Button(zest, Lewt='iis Acc y\n \n Smallest amount of data points taken\n (2700 total data pe
command=LowRes, height = round(screen_height*0.015), width=round(screen_width*0.022), font =
Tmadl\m\Eu[tnh:Euttnh(rnot, text="Madi Accuracy\n \n Four tin many data poin the Low Accu y ti
command=MedRes, height = round(screen height®0.015), width=round(screen width®*0.022), font = "A
ThighBu\:ton = Button(root, text="High Accuracy\n \n Eight times as many data point th W Accura
command=HighRes, height = round(screen_height*0.015), width=round (screen_width*0.022),
TexitButton = Button(root, text="Exit", background = "#DC143C7,
command=btnExit, height = round(screen_height*0.0125), width=round(screen_width+*0.022), font

imgl.place (

ound (screen_width*0.07), y=round(screen_height*0.02))

img2.place (x=round (screen_width*0.78), y=reund(screen height*0.03))

label_1.place (x=round (screen_width*0.20),
lowButton.place (x=round (screen_width*0.0

mediumButton.place (x=round (screen_width*0
highButton.place (x=round (screen_width*0. &
exitButton.place (x=round(screen_width*0.3

root.bind ("
root.mainloop ()

", end_fullscreen)

FIGURE A-4-2: GRAPHICAL USER INTERFACE CODE

y=round (screen_height*0.03))
4), y=round(screen_height+*0.33))
3 y=round (screen_height*0.33))
94), y=round(screen_height*0.33))
4), y=round(screen_height*0.7))

font =

justify="

i 1
, Jjustify=

justify:

background = "#1ESOFF",
ata

background =
r', wraplength=180)

, background = "#1
', wraplength=180)

', wraplength=180)

wraplength=300)

APPENDIX A-5: MATLAB

cle; eclose all; clear;
[x y z]=xyzread('output.x

and Z components.

Hety

for i 1: length(x)
shifting rows, and
if x(i) > 350
be deleted
x(i) = Nan;
end
end

will

$Nul

for i = 1:
shiftin
if x(i)
be deleted
wii)
end
end

length (x)
rows,

< 3

w

and

etti

= NaM; FNul

CODE

yz'); %Read .xyz files and separates into
s allows getting rid of points,
main ranges.
istance in wh nts at and after

lifies the point

allews getting rid of points,
main
ng Distance in which points at and after will

ranges.

lifies th

Plotting 3D Scatter plot from data run

3-D View of pl

figure(l)
scatter3(x,y,z,25,x, "£ill
set(geca, 'YDir', 'reverse

xlabel ('X'")
ylabel('Y")
zlabel ('Z')
view(-135,35)

3Labeling

$Sets ori

llows £
:Creates

coelorbar
colormap (jet)

t 2-D View of plot

figure(2)
scatter3(x,y,z,25,x,"£ill
set(geca, '¥YDir', 'reverse

xlabel ('X')
ylabel('Y")
zlabel ('Z2')
view(-90,-1)
colorbar
colormap (jet)

Contourf Plot

%Labeling

.
fo

reates a

ed');
")

axis

entation of

distance
bar.

or a coler lagend
more detailed o

a

a

3D scatter.

Direction

ed'); into
"

axis

ts points

Y-axis

everses

ntation of the graph
r a color legends for distance
more detaile olorbar.

Dr. Depeik came up with this to easily see fully colored image

the distan

Xc

ce data (typically z-direction for contour

Yo =

Zc =

res¥ = 1000; %t How many datapoi the contour X-

direction

resY = 1000; %t How many datapo the contour Y-

direction

resC = 10; % Y

Xi = linspace (min(Xc),max (Xc), resx); res¥X # of points
equally spaced between min and max of (Xc)

¥i = linspace (min(¥c),max(¥Yc), res¥y); nerates resY # of points

equally sps: d between
Zg = griddata (Xc,¥c',Zc,
scattered data in

figure(3)
contourf (Xi,¥i', Zg, resC)
xlabel ("'Y")
ylabel ("Z')
zlabel ("X")
colorbar %Allows
colormap (jet)

iCreates

Published with MATLAB® R2020a

vectors Xc,

for a coler legends

{¥c)

min and max of

Xi, ¥i'y; tfits a surface to the
and Zc

H %t Creates 2D filled ntour plot

Labeling axis

dist
colorbar.

for
detailed

a more

FIGURE A-5-1: COMMENTED MATLAB CODE

